In order to develop a microscopic level understanding of the anomalous dielectric properties of nanoconfined water (NCW), we study and compare three different systems, namely, (i) NCW between parallel graphene sheets (NCW-GSs), (ii) NCW inside graphene covered nanosphere (NCW-Sph), and (iii) a collection of one- and two-dimensional constrained Ising spins with fixed orientations at the termini. We evaluate the dielectric constant and study the scaling of ε with size by using linear response theory and computer simulations. We find that the perpendicular component remains anomalously low at smaller inter-plate separations (d) over a relatively wide range of d. For NCW-Sph, we could evaluate the dielectric constant exactly and again find a low value and a slow convergence to the bulk. To obtain a measure of surface influence into the bulk, we introduce and calculate correlation lengths to find values of ∼9 nm for NCW-GS and ∼5 nm for NCW-Sph, which are surprisingly large, especially for water. We discover that the dipole moment autocorrelations exhibit an unexpected ultrafast decay. We observe the presence of a ubiquitous frequency of ∼1000 cm-1, associated only with the perpendicular component for NCW-GS. This (caging) frequency seems to play a pivotal role in controlling both static and dynamic dielectric responses in the perpendicular direction. It disappears with an increase in d in a manner that corroborates with the estimated correlation length. A similar observation is obtained for NCW-Sph. Interestingly, one- and two-dimensional Ising model systems that follow Glauber spin-flip dynamics reproduce the general characteristics.An empirically scaled version of the explicitly correlated F12 correction to second-order Møller-Plesset perturbation theory (MP2-F12) is introduced. The scaling eliminates the need for many of the most costly terms of the F12 correction while reproducing the unscaled explicitly correlated F12 interaction energy correction to a high degree of accuracy. The method requires a single, basis set dependent scaling factor that is determined by fitting to a set of test molecules. We present factors for the cc-pVXZ-F12 (X = D, T, Q) basis set family obtained by minimizing interaction energies of the S66 set of small- to medium-sized molecular complexes and show that our new method can be applied to accurately describe a wide range of systems. Remarkably good explicitly correlated corrections to the interaction energy are obtained for the S22 and L7 test sets, with mean percentage errors for the double-zeta basis of 0.60% for the F12 correction to the interaction energy, 0.05% for the total electron correlation interaction energy, and 0.03% for the total interaction energy, respectively. Additionally, mean interaction energy errors introduced by our new approach are below 0.01 kcal mol-1 for each test set and are thus negligible for second-order perturbation theory based methods. The efficiency of the new method compared to the unscaled F12 correction is shown for all considered systems, with distinct speedups for medium- to large-sized structures.In this work, we present a kinetic Markov state Monte Carlo model designed to complement temperature-jump (T-jump) infrared spectroscopy experiments probing the kinetics and dynamics of short DNA oligonucleotides. The model is designed to be accessible to experimental researchers in terms of both computational simplicity and expense while providing detailed insights beyond those provided by experimental methods. The model is an extension of a thermodynamic lattice model for DNA hybridization utilizing the formalism of the nucleation-zipper mechanism. Association and dissociation trajectories were generated utilizing the Gillespie algorithm and parameters determined via fitting the association and dissociation timescales to previously published experimental data. Terminal end fraying, experimentally observed following a rapid T-jump, in the sequence 5'-ATATGCATAT-3' was replicated by the model that also demonstrated that experimentally observed fast dynamics in the sequences 5'-C(AT)nG-3', where n = 2-6, were also due to terminal end fraying. The dominant association pathways, isolated by transition pathway theory, showed two primary motifs initiating at or next to a GC base pair, which is enthalpically favorable and related to the increased strength of GC base pairs, and initiating in the center of the sequence, which is entropically favorable and related to minimizing the penalty associated with the decrease in configurational entropy due to hybridization.In recent years, room-temperature ferroelectricity has been experimentally confirmed in a series of two-dimensional (2D) materials. Theoretically, for isolated ferroelectricity in even lower dimensions such as 1D or 0D, the switching barriers may still ensure the room-temperature robustness for ultrahigh-density non-volatile memories, which has yet been scarcely explored. Here, we show ab initio designs of 0D/1D ferroelectrics/multiferroics based on functionalized transition-metal molecular sandwich nanowires (SNWs) with intriguing properties. Some functional groups such as -COOH will spontaneously form into robust threefold helical hydrogen-bonded chains around SNWs with considerable polarizations. Two modes of ferroelectric switching are revealed when the ends of SNWs are not hydrogen-bonded, the polarizations can be reversed via ligand reorientation that will reform the hydrogen-bonded chains and alter their helicity; when both ends are hydrogen-bonded, the polarizations can be reversed via proton transfer without changing the helicity of chains. The combination of those two modes makes the system the smallest proton conductor with a moderate migration barrier, which is lower compared with many prevalent proton-conductors for higher mobility while still ensuring the robustness at ambient conditions. This desirable feature can be utilized for constructing nanoscale artificial ionic synapses that may enable neuromorphic computing. In such a design of synaptic transistors, the migration of protons through those chains can be controlled and continuously change the conductance of MXene-based post-neuron for nonvolatile multilevel resistance. https://www.selleckchem.com/products/blu-451.html The success of mimicking synaptic functions will make such designs promising in future high-density artificial neutral systems.