Multiple studies confirm that PARP inhibitors play an important role in killing tumor cells with defects in homologous recombination repair. Its combination with immune checkpoint inhibitors, PI3K/AKT/mTOR pathway inhibitors, cell cycle checkpoint inhibitors, and other drugs can improve the treatment of endometrial cancer. The study aims to develop advanced antibacterial agents as nanoparticles instead of antibiotics due to the emergence of antimicrobial resistance. Pseudomonas aeruginosa is capable of causing many diseases, including severe bacterial pneumonia. There is a need for an efficient antibacterial agent to kill these pathogens. The objective of the study is to synthesize advanced antibacterial agents as nanoparticles for biomedical applications that can play a vital role in killing Gram-negative bacteria (Pseudomonas aeruginosa). A novel fabricated growth of hydrophilic spiky gold nanoparticles (SGNPs) via reduction method is reported. The surface plasmon resonance peak of the synthesized SGNPs was tuned under the near-infrared range. The SGNPs have anisotropic and spiky morphology with 68 nm size and -58 mV surface charge. They are pure, possessing adsorption similar to the organic material. Pseudomonas aeruginosa treated with synthesized SGNPs showed 60% bacterial death at the concentration of 100 μM. This work consists of the novel synthesis of SGNPs via a safe and simple reduction method. The synthesized SGNPs exhibit strong antibacterial activity against the Gram-negative bacteria Pseudomonas aeruginosa measured using a microplate assay test. The result showed that these SGNPs are ideal for biomedical applications. This work consists of the novel synthesis of SGNPs via a safe and simple reduction method. The synthesized SGNPs exhibit strong antibacterial activity against the Gram-negative bacteria Pseudomonas aeruginosa measured using a microplate assay test. https://www.selleckchem.com/products/tak-243-mln243.html The result showed that these SGNPs are ideal for biomedical applications. Curcumin possesses multiple bioactivities that have beneficial effects on diabetic foot ulcers. Herein, we aimed to conduct a systematic preclinical review of 9 studies including a total of 262 animals, to assess the possible mechanisms of curcumin for wound healing in diabetic animals. Five databases were searched from inception to May 12, 2020; Rev-Man 5.3 software was applied for data analyses. Cochrane Collaboration's tool 10-item checklist was used to evaluate the methodological quality, and data revealed scores of risk of bias ranging from 2 to 5. Meta-analysis indicated that curcumin had significant effects on wound healing rate and blood vessel density when compared with control (P < 0.05). The wound regeneration properties of curcumin for diabetic wounds are thought to mainly work through the possible mechanisms of antioxidation, enhanced cell proliferation, increased collagen formation, and angiogenesis. However, the anti-inflammatory effect on wounds in diabetic animals remains controversial. The findings indicate that more randomized controlled trials should be pursued to obtain more reliable results regarding inflammatory response. Overall, curcumin might be a probable candidate for diabetic foot ulcers and may contribute to future clinical trials. The findings indicate that more randomized controlled trials should be pursued to obtain more reliable results regarding inflammatory response. Overall, curcumin might be a probable candidate for diabetic foot ulcers and may contribute to future clinical trials.Ulcerative colitis (UC) is one of the main subtypes of inflammatory bowel disease. UC has a negative effect on patients' quality of life, and it is an important risk factor for the development of colitis-associated cancer. Patients with UC need to take medications for their entire life because no permanent cure is available. Therefore, approaches that target messenger RNA (mRNA) of proinflammatory cytokines or anti-inflammatory cytokines are needed to improve the safety of UC therapy and promote intestinal mucosa recovery. The major challenge facing RNA interference-based therapy is the delivery of RNA molecules to the intracellular space of target cells. Moreover, nonspecific and systemic protein expression inhibition can result in adverse effects and less therapeutic benefits. Thus, it is important to develop an efficient delivery strategy targeting the cytoplasm of target cells to avoid side effects caused by off-target protein expression inhibition. This review focuses on the most recent advances in the targeted nano delivery systems of siRNAs and mRNA that have shown in vivo efficacy. Breast cancer is one of the malignant tumours which mainly affect the female population. Total 20% of the cases of breast cancer are due to overexpression of Human epidermal growth factor receptor-2 (HER2), which is the dominant tyrosine kinase receptor. In general, 9-anilinoacridine derivatives play an important role as antitumor agents due to their DNA-intercalating properties. Some novel 9-anilinoacridines substituted with pyrazole moiety(1a-z) were designed, and their HER2enzyme (PDB id-3PP0) inhibition activity was evaluated by molecular docking studies using the Glide module of Schrodinger suite 2019-4. Glide module of the Schrodinger suite was used to perform docking studies, qikprop module was used for in-silico ADMET screening, and the Prime-MM-GBSA module was used for free binding energy calculations. Using GLIDE scoring functions, we can determine the binding affinity of ligands (1a-z) towards HER2. The inhibitory activity of ligands against HER2 was mainly due to the strong hydrophobic and hydrogen bonding interactions. Almost all the compounds 1a-z have a good binding affinity with Glide scores in the range of -4.9 to -9.75 compared to the standard drugs CK0403(-4.105) and Tamoxifen (-3.78). From the results of in-silico ADMET properties, most of the compounds fall within the recommended values. MM-GBSA binding calculations of the most potent inhibitors are more favourable. The results of in-silico studies provide strong evidence for the consideration of valuable ligands in pyrazole substituted 9-anilinoacridines as potential HER2 inhibitors, and the compounds, 1v,s,r,d, a,o with significant Glide scores may produce significant anti-breast cancer activity for further development. The results of in-silico studies provide strong evidence for the consideration of valuable ligands in pyrazole substituted 9-anilinoacridines as potential HER2 inhibitors, and the compounds, 1v,s,r,d, a,o with significant Glide scores may produce significant anti-breast cancer activity for further development.