EC50 values showed that pyraclostrobin and azoxystrobin are the most efficient fungicides in vitro, whereas fluxapyroxad displayed the best disease inhibition in planta (81% inhibition at 1/9 of the full dose). The EC50 values recorded for each form of net blotch showed no significant difference in efficiency of QoI treatments and propiconazole on each form. However, in the case of fluxapyroxad, epoxiconazole and tebuconazole treatments, analysis showed significant differences in their efficiency. To our knowledge, this study is the first investigation related to mutations associated to QoI and SDHI fungicide resistance in Algerian P. teres population, as well as it is the first evaluation of the sensitivity of P. teres population towards these six fungicides.In nature, plants are always under the threat of pests and diseases. Pathogenic bacteria are one of the major pathogen types to cause diseases in diverse plants, resulting in negative effects on plant growth and crop yield. Chemical bactericides and antibiotics have been used as major approaches for controlling bacterial plant diseases in the field or greenhouse. However, the appearance of resistant bacteria to common antibiotics and bactericides as well as their potential negative effects on environment and human health demands bacteriologists to develop alternative control agents. Bacteriophages, the viruses that can infect and kill only target bacteria very specifically, have been demonstrated as potential agents, which may have no negative effects on environment and human health. Many bacteriophages have been isolated against diverse plant-pathogenic bacteria, and many studies have shown to efficiently manage the disease development in both controlled and open conditions such as greenhouse and field. Moreover, the specificity of bacteriophages to certain bacterial species has been applied to develop detection tools for the diagnosis of plant-pathogenic bacteria. In this paper, we summarize the promising results from greenhouse or field experiments with bacteriophages to manage diseases caused by plant-pathogenic bacteria. https://www.selleckchem.com/ In addition, we summarize the usage of bacteriophages for the specific detection of plant-pathogenic bacteria.Volatile compounds (VOCs) are not only media for communication within a species but also effective tools for sender to manipulate behavior and physiology of receiver species. Although the influence of VOCs on the interactions among organisms is evident, types of VOCs and specific mechanisms through which VOCs work during such interactions are only beginning to become clear. Here, we review the fungal volatile compounds (FVOCs) and their impacts on different recipient organisms from perspective of distinct lifestyles of the filamentous fungi. Particularly, we discuss the possibility that different lifestyles are intimately associated with an ability to produce a repertoire of FVOCs in fungi. The FVOCs discussed here have been identified and analyzed as relevant signals under a range of experimental settings. However, mechanistic insight into how specific interactions are mediated by such FVOCs at the molecular levels, amidst complex community of microbes and plants, requires further testing. Experimental designs and advanced technologies that attempt to address this question will facilitate our understanding and applications of FVOCs to agriculture and ecosystem management.Background MiR-664 has been demonstrated to play an important role in dermal diseases. However, the functions of miR-664 in ultraviolet B (UVB) radiation-induced keratinocytes damage remain to be elucidated. Objective The present study aimed to investigate the molecular mechanisms under the UVB-induced keratinocytes damage and provide translational insights for future therapeutics and UVB protection. Methods HaCaT cells were transfected with miR-664, either alone or combined with UVB irradiation. Levels of messenger RNA and protein were tested by quantitative real-time polymerase chain reaction and Western blot analyses. Cell proliferation, percentage of apoptotic cells, and expression levels of apoptosis-related factors were measured by Cell Counting Kit-8 assay, flow cytometry assay, and Western blot analysis, respectively. Results We found that a significant increase in miR-664 was observed in UVB-induced HaCaT cells. Overexpressed miR-664 promoted cell vitalities and suppressed apoptosis of UVB-induced HaCaT cells. Additionally, the loss/gain of armadillo-repeat-containing protein 8 (ARMC8) rescued/blocked the effects of miR-664 on the proliferation of UVB-induced HaCaT cells. Conclusions Our data demonstrate that miR-664 functions as a protective regulator in UVB-induced HaCaT cells via regulating ARMC8.Increasing evidence indicated that microRNAs served dominant roles in carcinogenesis and cancer progression by targeting potential downstream genes. In our study, we found that miR-527 was an upregulated expression in human esophageal squamous cell carcinoma (ESCC) cells and tissues. Furthermore, overexpression of miR-527 promoted cell proliferation and colony formation, enhanced anchorage-independent growth ability, and contributed to cell cycle. In addition, protein phosphatase 2 (PHLPP2) was identified as the direct downstream target gene of miR-527 and was confirmed by luciferase gene reporter assay. In summary, we concluded that miR-527 acted as an oncogenic microRNA in ESCC development by directly targeting PHLPP2 might be a novel therapeutic target for the treatment of ESCC.Nonlinear dose-response relationships exist extensively in the cellular, biochemical, and physiologic processes that are affected by varying levels of biological, chemical, or radiation stress. Modeling such responses is a crucial component of toxicity testing and chemical screening. Traditional model fitting methods such as nonlinear least squares (NLS) are very sensitive to initial parameter values and often had convergence failure. The use of evolutionary algorithms (EAs) has been proposed to address many of the limitations of traditional approaches, but previous methods have been limited in the types of models they can fit. Therefore, we propose the use of an EA for dose-response modeling for a range of potential response model functional forms. This new method can not only fit the most commonly used nonlinear dose-response models (eg, exponential models and 3-, 4-, and 5-parameter logistic models) but also select the best model if no model assumption is made, which is especially useful in the case of high-throughput curve fitting.