Plasmon-enhanced fluorescence (PEF) is a simple and highly effective approach for improving the signal-to-noise ratio and sensitivity of various fluorescence-based bioanalytical techniques. Here, we show that the fluorescence enhancement efficacy of gold nanorods (AuNRs), which are widely employed for PEF, is highly dependent on their absolute dimensions (i.e., length and diameter). Notably, an increase in the dimensions (length × diameter) of the AuNRs from 46 × 14 to 120 × 38 nm2 while holding the aspect ratio constant leads to nearly 300% improvement in fluorescence enhancement efficiency. Further increase in the AuNR size leads to a decrease of the fluorescence enhancement efficiency. Through finite-difference time-domain (FDTD) simulation, we reveal that the size-dependent fluorescence enhancement efficiency of AuNR stems from the size-dependent electromagnetic field around the plasmonic nanostructures. AuNRs with optimal dimensions resulted in a nearly 120-fold enhancement in the ensemble fluorescence emission from molecular fluorophores bound to the surface. These plasmonic nanostructures with optimal dimensions also resulted in a nearly 30-fold improvement in the limit of detection of human interleukin-6 (IL-6) compared to AuNRs with smaller size, which are routinely employed in PEF.We present a highly accurate numerical implementation for computing the Kohn-Sham effective potentials for molecules based on a Hartree-Fock wavefunction and density, following the RKS approach of Staroverov and co-workers [ J. Chem. Phys. 2014, 140, 18A535]. Potentials and orbitals are represented in a multiresolution wavelet basis, avoiding basis set incompleteness-related issues. Together with the RKS method, the often occurring problems of oscillating potentials are removed. The MRA implementation of the RKS method allows the generation of molecular Kohn-Sham potentials of benchmark quality. Numerical data for atoms up to Kr and a number of molecules are given, with a special emphasis on the role of nodal planes in the calculations, as showcased in HCN and benzene.The anion exchange and water dynamics of a phosphonium-based alkaline anion exchange membrane (AAEM) during the methanol oxidation process have been studied with the electrochemical quartz crystal microbalance (EQCM). The viscoelastic effects of the phosphonium-based AAEM in water and the optimal film thickness for EQCM analysis were identified by acoustic impedance analysis. The phosphonium-based AAEM exhibited stronger mechanical toughness in water when compared to a quaternary-ammonium-based membrane that was studied previously. https://www.selleckchem.com/products/auranofin.html From the simultaneous measurement of the electrochemical response and the frequency changes of the quartz crystal oscillator, water ingress/egress to/from the AAEM film was found to accompany the hydrogen adsorption/desorption, Pt oxidation process, and methanol oxidation process. The in situ study of AAEM films helps illustrate the critical role that water transport plays in electrochemical processes during the operation of anion exchange membrane fuel cells. The generated CO32- and HCOO-, during methanol oxidation, were absorbed into the AAEM film, replacing the OH- in the film, as shown by the decrease in frequency after one potential cycle. The exchange of OH- by CO32- and HCOO- was found to be reversible. These results provide insights into the anion exchange processes in membranes and emphasize the importance of characterizing the hydrated membranes under electrochemical conditions.Development of carbon neutral and sustainable energy sources should be considered as a top priority solution for the growing worldwide energy demand. Photovoltaics are a strong candidate, more specifically, organic photovoltaics (OPV), enabling the design of flexible, lightweight, semitransparent, and low-cost solar cells. However, the active layer of OPV is, for now, mainly deposited from chlorinated solvents, harmful for the environment and for human health. Active layers processed from health and environmentally friendly solvents have over recent years formed a key focus topic of research, with the creation of aqueous dispersions of conjugated polymer nanoparticles arising. These nanoparticles are formed from organic semiconductors (molecules and macromolecules) initially designed for organic solvents. The topic of nanoparticle OPV has gradually garnered more attention, up to a point where in 2018 it was identified as a "trendsetting strategy" by leaders in the international OPV research community. Hence, presenting the upscaling strategies in practice for this environmentally friendly and safer production of solar cells.Single-crystal LiNi1-x-yCoxMnyO2 cathode materials can effectively suppress intergranular cracks that usually is seen in commercial polycrystal LiNi1-x-yCoxMnyO2 cathode materials. However, the surface structure degradation for single-crystal LiNi1-x-yCoxMnyO2 cathode materials is still aggravated at a higher cutoff voltage (over 4.5 V). In this work, we prepare single-crystal LiNi0.6Co0.2Mn0.2O2 cathode materials via a solid-state method and then coat an ultrathin Li-Si-O layer on their surface by a wet coating method. The results show that the single-crystal LiNi0.6Co0.2Mn0.2O2 cathode materials with a Li-Si-O coating layer deliver excellent cycling performance even at a higher cutoff voltage of 4.5 V. The optimized Li-Si-O-modified sample displays a capacity retention of 90.6% after 100 cycles, whereas only 68.0% for unmodified single-crystal LiNi0.6Co0.2Mn0.2O2. Further analysis of the cycled electrodes reveals that the surface structure degradation is the main reason for the decrease of electrochemical performance of single-crystal LiNi0.6Co0.2Mn0.2O2 at a high voltage (4.5 V). In contrast, with Li-Si-O coating, this phenomenon can be suppressed effectively to maintain interfacial stability and prolong the cycling life.Quinolone, pyocyanin, and rhamnolipid production were studied in Pseudomonas aeruginosa by spatially patterning mucin, a glycoprotein important to infection of lung epithelia. Mass spectrometric imaging and confocal Raman microscopy are combined to probe P. aeruginosa biofilms from mucoid and nonmucoid strains grown on lithographically defined patterns. Quinolone signatures from biofilms on patterned vs unpatterned and mucin vs mercaptoundecanoic acid (MUA) surfaces were compared. Microbial attachment is accompanied by secretion of 2-alkyl-4-quinolones as well as rhamnolipids from the mucoid and nonmucoid strains. Pyocyanin was also detected both in the biofilm and in the supernatant in the mucoid strain only. Significant differences in the spatiotemporal distributions of secreted factors are observed between strains and among different surface patterning conditions. The mucoid strain is sensitive to composition and patterning while the nonmucoid strain is not, and in promoting community development in the mucoid strain, nonpatterned surfaces are better than patterned, and mucin is better than MUA.