https://www.selleckchem.com/products/abt-199.html E-textile consisting of natural fabrics has become a promising material to construct wearable sensors due to its comfortability and breathability on the human body. However, the reported fabric-based e-textile materials, such as graphene-treated cotton, silk, and flax, generally suffer from the electrical and mechanical instability in long-term wearing. In particular, fabrics on the human body have to endure heat variation, moisture evaporation from metabolic activities, and even the immersion with body sweat. To face the above challenges, here we report a wool-knitted fabric sensor treated with graphene oxide (GO) dyeing followed by l-ascorbic acid (l-AA) reduction (rGO). This rGO-based strain sensor is highly stretchable, washable, and durable with rapid sensing response. It exhibits excellent linearity with more than 20% elongation and, most importantly, withstand moisture from 30 to 90% (or even immersed with water) and still maintains good electrical and mechanical properties. We further demonstrate that, by integrating this proposed material with the near-field communication (NFC) system, a batteryless, wireless wearable body movement sensor can be constructed. This material can find wide use in smart garment applications.The morphology of nanocrystals serves as a powerful handle to modulate their functional properties. For semiconducting nanostructures, the shape is no less important than the size and composition in terms of determining the electronic structures. For example, in the case of nanoplatelets (NPLs), their 2D electronic structure and atomic precision along the axis of quantum confinement makes them well-suited as pure color emitters and optical gain media. In this study we describe synthetic efforts to develop ZnSe NPLs emitting in the ultraviolet part of the spectrum. We focus on two populations of NPLs, the first having a sharp absorption onset at 345 nm and a previously unreported species with a