https://www.selleckchem.com/products/thal-sns-032.html In thoracolumbar vertebral tumors, reconstruction of complex multi-segment thoracolumbar vertebrae after total en-bloc spondylectomy (TES) is still challenging. In recent years, with the development of 3D printing technology, individualized 3D printed artificial vertebrae have been attempted to reconstruct complex multi-segment thoracolumbar spine. Compared with traditional titanium mesh or bone transplantation, it helps reduce long-term complications, bringing a new dawn for reconstructing multi-segment thoracolumbar spine. A 69-year-old female complained of low back pain with limited motion for 1 month. More than 2 months ago, she underwent radical mastectomy due to breast cancer (Luminal A subtype). Imageology examination revealed an osteolytic lesion involving the T11-L1 vertebra. She was performed one-stage 3-segment (T11-L1) en-bloc spondylectomy via posterior approach, and then an artificial vertebrae produced by a novel individualized 3D printing technology was used for reconstruction. The patient was follow-up for 2 years, and she recovered well, with no tumor recurrence, and no complications after spinal reconstruction. The application of individualized 3D printed artificial vertebrae in multi-segment thoracolumbar spine reconstruction can not only reconstruct the bone defect more accurately through the individualized design, but the porous design is able to achieve biomechanical performance comparable to that of cancellous bone, and it is conducive to inducing bone growth, all of which help reduce long-term mechanical complications. Furthermore, the application of artificial vertebrae in surgery can significantly shorten the operation time, reduce intraoperative blood loss and reduce the risk of perioperative complications. Therefore, individualized 3D printed artificial vertebrae is a good choice for complex multi-segment thoracolumbar spine reconstruction. Geranylgeranylacetone (GGA) has been recent