Carcinoid tumors are being seen with increasing frequency by surgeons and have become the most common type of tumors of the small bowel. These tumors produce a variety of hormones, which leads to many unique characteristics in terms of symptoms and presentation. Our knowledge of the natural history and treatment of these tumors continues to evolve, and this article will summarize these advances.Background COVID-19 has resulted in restriction of face to face consultations and mechanisms to access health care. https://www.selleckchem.com/products/sbc-115076.html Osteoporosis and fragility fractures forms a significant proportion of adult trauma and orthopaedic workload even during the pandemic. Aims We assess the challenges and strategies used in the management of osteoporosis and fragility fracture care during the COVID-19 pandemic. Methods We have done a comprehensive review of the literature using suitable keywords on the search engines of PubMed, SCOPUS, Google Scholar and Research Gate in the first week of May 2020 on developments and guidance during the current COVID-19 pandemic. Results Osteoporosis and fragility fractures management has been hampered by lock down and infection transmission strategies used to contain the COVID-19 pandemic. Access to diagnostic tests, treatment facilities with the need to use clinical and prediction tools to guide management Telemedicine has an evolving role. Conclusion Osteoporosis and fragility fractures in elderly individuals pose a real challenge for an appropriate diagnosis and management, during the COVID-19 pandemic. A clinical decision along with use of clinical prediction tools for osteoporosis should be used to direct treatment. Obligatory fractures such as hip fractures require operative intervention. Non-obligatory fractures such as distal radius fractures can be managed conservatively with use of telemedicine applications in monitoring both types of patients.Global efforts around the world are focused on to discuss several health care strategies for minimizing the impact of the new coronavirus (COVID-19) on the community. As it is clear that this virus becomes a public health threat and spreading easily among individuals. Mathematical models with computational simulations are effective tools that help global efforts to estimate key transmission parameters and further improvements for controlling this disease. This is an infectious disease and can be modeled as a system of non-linear differential equations with reaction rates. This work reviews and develops some suggested models for the COVID-19 that can address important questions about global health care and suggest important notes. Then, we suggest an updated model that includes a system of differential equations with transmission parameters. Some key computational simulations and sensitivity analysis are investigated. Also, the local sensitivities for each model state concerning the model parameters are computed using three different techniques non-normalizations, half normalizations, and full normalizations. Results based on the computational simulations show that the model dynamics are significantly changed for different key model parameters. Interestingly, we identify that transition rates between asymptomatic infected with both reported and unreported symptomatic infected individuals are very sensitive parameters concerning model variables in spreading this disease. This helps international efforts to reduce the number of infected individuals from the disease and to prevent the propagation of new coronavirus more widely on the community. Another novelty of this paper is the identification of the critical model parameters, which makes it easy to be used by biologists with less knowledge of mathematical modeling and also facilitates the improvement of the model for future development theoretically and practically.The automatic analysis of ultrasound sequences can substantially improve the efficiency of clinical diagnosis. This article presents an attempt to automate the challenging task of measuring the vascular diameter of the fetal abdominal aorta from ultrasound images. We propose a neural network architecture consisting of three blocks a convolutional neural network (CNN) for the extraction of imaging features, a convolution gated recurrent unit (C-GRU) for exploiting the temporal redundancy of the signal, and a regularized loss function, called CyclicLoss, to impose our prior knowledge about the periodicity of the observed signal. The solution is investigated with a cohort of 25 ultrasound sequences acquired during the third-trimester pregnancy check, and with 1000 synthetic sequences. In the extraction of features, it is shown that a shallow CNN outperforms two other deep CNNs with both the real and synthetic cohorts, suggesting that echocardiographic features are optimally captured by a reduced number of CNN layers. The proposed architecture, working with the shallow CNN, reaches an accuracy substantially superior to previously reported methods, providing an average reduction of the mean squared error from 0.31 (state-of-the-art) to 0.09 mm 2 , and a relative error reduction from 8.1 to 5.3%. The mean execution speed of the proposed approach of 289 frames per second makes it suitable for real-time clinical use.Nano-CT (computerized tomography) has emerged as a non-destructive high-resolution cross-sectional imaging technique to effectively study the sub-µm pore structure of shale, which is of fundamental importance to the evaluation and development of shale oil and gas. Nano-CT poses unique challenges to the inverse problem of reconstructing the 3D structure due to the lower signal-to-noise ratio (than Micro-CT) at the nano-scale, increased sensitivity to the misaligned geometry caused by the movement of object manipulator, limited sample size, and a larger volume of data at higher resolution. We propose a scalable double regularization (SDR) method to utilize the entire dataset for simultaneous 3D structural reconstruction across slices through total variation regularization within slices and L 1 regularization between adjacent slices. SDR allows information borrowing both within and between slices, contrasting with the traditional methods that usually build on slice by slice reconstruction. We develop a scalable and memory-efficient algorithm by exploiting the systematic sparsity and consistent geometry induced by such Nano-CT data.