https://www.selleckchem.com/products/tpi-1.html The complex interspersed pattern of segmental duplications in humans is responsible for rearrangements associated with neurodevelopmental disease, including the emergence of novel genes important in human brain evolution. We investigate the evolution of LCR16a, a putative driver of this phenomenon that encodes one of the most rapidly evolving human-ape gene families, nuclear pore interacting protein (NPIP). Comparative analysis shows that LCR16a has independently expanded in five primate lineages over the last 35 million years of primate evolution. The expansions are associated with independent lineage-specific segmental duplications flanking LCR16a leading to the emergence of large interspersed duplication blocks at non-orthologous chromosomal locations in each primate lineage. The intron-exon structure of the NPIP gene family has changed dramatically throughout primate evolution with different branches showing characteristic gene models yet maintaining an open reading frame. In the African ape lineage, neage, suggestive of a gene undergoing strong adaptive evolution. Parasitic infections may cause significant effects on behavior, learning, and memory of the host. In the brain of mice heavily infected with Angiostrongylus cantonensis, severe damage has been observed in the hippocampus. This component has been considered to have associations with spatial learning and memory in humans and vertebrates. This study was designed to determine the impairments in behavior, learning, and memory in BALB/c and C57BL/6 mice heavily infected with the parasite. Each mouse was inoculated with 50 third-stage larvae of A. cantonensis. After infection, daily changes in weight and dietary consumption, worm recoveries and survival rates were determined. The forced swimming test, open field test, and Morris water maze test were employed to evaluate depression- and anxiety-like behavior as well as impairments in spatial learning and memory,