https://www.selleckchem.com/products/gf109203x.html Step 1 showed a negligible bias of the PK model to underpredict concentrations (-0.84 mg/L). Step 2 revealed a high level of agreement between risk of target non-attainment predictions for creatinine clearances >50 mL/min (CCC = 0.990), but considerable deviations for patients <50 mL/min. For 27% of EUCAST-listed pathogens the median cumulative-fraction-of-response for the observed patients receiving standard dosing was < 90%. The MeroRisk-calculator was successfully evaluated For patients with maintained renal function it allows a reliable and user-friendly risk assessment. The integration of pathogen-based risk assessment substantially increases the applicability of the tool. The MeroRisk-calculator was successfully evaluated For patients with maintained renal function it allows a reliable and user-friendly risk assessment. The integration of pathogen-based risk assessment substantially increases the applicability of the tool.In recent decades, drug delivery systems (DDSs) based on nanotechnology have been attracting substantial interest in the pharmaceutical field, especially those developed based on natural polymers such as chitosan, cellulose, starch, collagen, gelatin, alginate and elastin. Nanomaterials based on chitosan (CS) or chitosan derivatives are broadly investigated as promising nanocarriers due to their biodegradability, good biocompatibility, non-toxicity, low immunogenicity, great versatility and beneficial biological effects. CS, either alone or as composites, are suitable substrates in the fabrication of different types of products like hydrogels, membranes, beads, porous foams, nanoparticles, in-situ gel, microparticles, sponges and nanofibers/scaffolds. Currently, the CS based nanocarriers are intensely studied as controlled and targeted drug release systems for different drugs (anti-inflammatory, antibiotic, anticancer etc.) as well as for proteins/peptides, growth factors, vaccines, small DN