https://www.selleckchem.com/products/GSK429286A.html The isobenzofuran-1(3H)-ones (phthalides) exhibit various biological activities, including antioxidant activity on reactive oxygen species (ROS). An excess of ROS that cannot be naturally contained by cellular enzymatic systems is called redox imbalance, which damage cell membranes, proteins, and DNA, thereby possibly triggering neuronal death in several neurodegenerative diseases. Considering our ongoing efforts to find useful compounds to control redox imbalance, herein we evaluated the antioxidant activity of two phtalides (compounds 3 and 4), using primary cultures of hippocampal neurons. Spectrophotometric assays showed that compound 3 significantly reduced (p ≤ 0.05) ROS levels and lipid peroxidation compared to the control treatment, while compound 4 was unable at any of the tested concentrations. Despite their structural similarity, these compounds behave differently in the intracellular environment, which was reliably corroborated by the determination of oxidation potentials via cyclic voltammetry. It was demonstrated that compound 3 presents a lower oxidation potential. The combination of the mentioned methods allowed us to find a strong correlation between the chemical structure of compounds and their biological effects. Taking together, the results indicate that compound 3 presents desirable characteristics to act as a candidate pharmacological agent for use in the prevention and treatment of neurodegenerative diseases.With the increased use of nanomaterials and increased exposure of humans to various nanomaterials, the potential health effects of nanomaterials cannot be ignored. The hepatotoxicity of cobalt nanoparticles (Nano-Co) is largely unknown and the underlying mechanisms remain obscure. The purpose of this study was to exam the hepatotoxicity induced by Nano-Co and its potential mechanisms. Our results showed that exposure of human fetal hepatocytes L02 to Nano-Co caused a dose- and a time-dep