Mechanically, LEF1-AS1 acted as a ceRNA for miR-543 and positively regulated engrailed homeobox 2 (EN2) expression. Down-regulation of miR-543 elevated GBM cell malignant behaviors, which was reversed by LEF1-AS1 knockdown. Meanwhile, the LEF1-AS1 inhibition could arrest the promoting effect of high-regulated EN2 on GBM cell aggressiveness and vice versa. In conclusion, our findings identified LEF1-AS1 as a ceRNA for miR-543 and showed that EN2 was positively regulated by LEF1-AS1. The LEF1-AS1/miR-543/EN2, as a novel ceRNA network, was implicated in the progression of GBM, which provided a novel insight for GBM treatment. Fatty acid binding protein 7 (FABP7) has a protective role in the central nervous system injury and regulates neurogenesis during brain development; however, its roles in neuronal injury and neurogenesis after cerebral ischemia have not been elucidated. In this study, the expression of FABP7 after ischemia was studied and the effects of genetic FABP7 inhibition on neuronal injury and neurogenesis after ischemia were investigated. Male FABP7 knockout (KO) mice on a C57BL/6J background and their wild-type (WT) littermates were subjected to transient forebrain ischemia for 20 min. There was no difference in the level of neuronal injury between WT and KO mice. FABP7 expression was observed in neural stem/progenitor cells and increased 7-10 days after ischemia, which was consistent with the peak of hippocampal neurogenesis. In the KO mice, neurogenesis was significantly decreased compared with WT mice under both physiological and ischemic conditions. Differentiation from newborn cells to immature neurons was activated in the KO mice, but there was no difference in the number of cells that differentiated into mature neurons. These findings imply that FABP7 expressed in neuronal stem/progenitor cells regulates the proliferation and maintenance of newborn cells. V.A method was developed and validated for the detection of colistin-resistant Escherichia coli containing mcr-1 in the feces of feral swine. Following optimization of an enrichment method using EC broth supplemented with colistin (1 μg/mL) and vancomycin (8 μg/mL), aliquots derived from 100 feral swine fecal samples were spiked with of one of five different mcr-1 positive E. coli strains (between 100 and 104 CFU/g), for a total of 1110 samples tested. Enrichments were then screened using a simple boil-prep and a previously developed real-time PCR assay for mcr-1 detection. The sensitivity of the method was determined in swine feces, with mcr-1 E. coli inocula of 0.1-9.99 CFU/g (n = 340), 10-49.99 CFU/g (n = 170), 50-99 CFU/g (n = 255), 100-149 CFU/g (n = 60), and 200-2200 CFU/g (n = 175), which were detected with 32%, 72%, 88%, 95%, and 98% accuracy, respectively. Uninoculated controls (n = 100) were negative for mcr-1 following enrichment. Published by Elsevier B.V.BACKGROUND AND AIM The rapid diagnosis of bloodstream infection (BSI) often leads to better clinical outcomes. The present study was conducted to compare two rapid protocols (Sepsityper kit and short-term subculture) for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based identification of microorganisms from positive blood cultures in pediatric patients. METHODS This study was conducted between May 1, 2018, and April 30, 2019, at a tertiary children's hospital in eastern China. Only monomicrobial blood cultures included in this study were used to conduct the Sepsityper kit protocol and short-term subculture protocol at the same time. RESULTS In total, 115 monomicrobial blood cultures were included in this study. https://www.selleckchem.com/products/ABT-263.html For the Sepsityper kit protocol, 85.2% and 64.3% of microorganisms were correctly identified to the genus (score ≥ 1.700) and species levels (score ≥ 2.000), respectively. For the short-term subculture protocol, 89.6% and 70.4% of microorganisms were corrof most microorganisms from positive blood cultures in pediatric patients. The performance of these two rapid protocols is associated with the TTP of blood cultures. Treatment with 70% ethanol has been proposed as a safe and effective way to inactive bacteria for transport between laboratories prior to identification by MALDI-TOF MS. Ethanol alone does not inactivate spore-forming bacteria and additional chemical or physical treatment is necessary to guarantee inactivation of bacterial spores. Depression is a serious disorder characterized by imbalance of mood and emotions, which is accompanied by the reduction in the monoaminergic signaling. The monoamine oxidase inhibition could lead to an increase in monoaminergic neurotransmitter levels in the brain. According to our previous study, 3-phenyl-4-(phenylseleno) isoquinoline (PSI) is a selective and reversible MAO-B inhibitor in vitro. The present study investigated the putative ex vivo inhibitory effect of a single PSI dose on the cerebral MAO activity and its antidepressant-like action in the mouse forced swimming test (FST). Additionally, the dopaminergic system contribution to the antidepressant-like effect of PSI was also evaluated. For this, PSI was dissolved in canola oil to determine time-course (0.5-24 h) and dose-response (25-100 mg/kg, 10 ml/kg, intragastrically) curves of MAO activity inhibition using adult C57Bl/6 male mice. A single PSI dose of 100 mg/kg inhibited the MAO-B activity in the whole brain 8 h after administration to mice, while it did not alter the MAO-A activity. The FST was carried out 0.5, 8, and 24 h after the PSI administration (100 mg/kg) or vehicle, but its antidepressant-like effect was demonstrated only at 0.5 and 8 h after treatment. Lastly, the contribution of dopaminergic system in the PSI antidepressant-like effect was demonstrated by using dopamine receptors antagonists, SCH23390, haloperidol and sulpiride. Thus, a single PSI dose of 100 mg/kg had an antidepressant-like effect in mice subjected to the FST 0.5 and 8 h after its administration. Moreover, the inhibition of cerebral MAO-B activity and modulation of dopamine receptors contributed to the antidepressant-like effect of PSI in mice.