https://www.selleckchem.com/products/voruciclib.html e. tip speed and displacement), as evident from laser vibrometry analysis, and subsequently yielded measurable cavitation quantified via sonochemical analysis. All other passive endodontic activation devices, despite ultrasonic oscillation, were unable to produce cavitation. V.Here we report silver incorporated anatase TiO2 developed on Ti metal by H2O2-AgNO3 and heat treatment to have faster biomineralisation or apatite-forming ability in simulated body fluid (SBF). Apatite-forming ability has been investigated concerning heat treatment temperatures ranges, 400-800 °C and duration of soaking period in SBF. The apatite formation showed an increasing trend with increase in the heat treatment temperatures up to 600 °C and beyond that the Ti metal lost this ability. XRD as wells as Raman results of such chemical and heat-treated Ti metal at different temperatures further correlates the apatite nucleation directly in relation with that of anatase to rutile TiO2 formation. Further, a time dependent apatite mineralisation study by XPS revealed simultaneous calcium and phosphate deposition at the early stage of soaking in SBF. Therefore, the apatite nucleation in the present chemically treated Ti metal depends on the crystalline phase of TiO2 formed by H2O2 and heat treatment along with Ag+ ion release. Bioapatite formation in bones is a slow process starting with deposition of calcium phosphate and then its nucleation and crystallization into hydroxyapatite crystals. If the same process can be replicated on tissue engineered scaffolds, it will result in the formation of biomimetic bone constructs that will have comparable mechanical properties to native tissue. To mimic the same process on 3D printed polycaprolactone (PCL) scaffolds oxygen plasma treatment was performed to modify their surface chemistry. The attenuated total reflectance-fourier transform infrared (ATR-FTIR) analysis showed formation of carboxyl groups o