Whilst traditional biohybrids retain densely packed surfactant coronas, our biohybrids display a less dense and heterogeneously distributed surfactant coverage located opposite to the catalytic cleft of HEWL. In solution, this surfactant coating permits 7- or 3.5-fold improvements in activity retention for biohybrids containing C12EO10 or C12EO22, respectively. The reported alternative pathway for biohybrid preparation offers a new horizon to expand upon the library of proteins for which functional biohybrid materials can be prepared. We also expect that an improved understanding of the distribution of tethered surfactants in the corona will be crucial for future structure-function investigations.Optical imaging probes have played a major role in detecting and monitoring a variety of diseases. In particular, nonlinear optical imaging probes, such as second harmonic generating (SHG) nanoprobes, hold great promise as clinical contrast agents, as they can be imaged with little background signal and unmatched long-term photostability. As their chemical composition often includes transition metals, the use of inorganic SHG nanoprobes can raise long-term health concerns. Ideally, contrast agents for biomedical applications should be degraded in vivo without any long-term toxicological consequences to the organism. Here, we developed biodegradable harmonophores (bioharmonophores) that consist of polymer-encapsulated, self-assembling peptides that generate a strong SHG signal. When functionalized with tumor cell surface markers, these reporters can target single cancer cells with high detection sensitivity in zebrafish embryos in vivo. Thus, bioharmonophores will enable an innovative approach to cancer treatment using targeted high-resolution optical imaging for diagnostics and therapy.The combination of alkyne and halogen functional groups in the same molecule allows for the possibility of many different reactions when utilized in on-surface synthesis. Here, we use a pyrene-based precursor with both functionalities to examine the preferential reaction pathway when it is heated on an Au(111) surface. Using high-resolution bond-resolving scanning tunneling microscopy, we identify multiple stable intermediates along the prevailing reaction pathway that initiate with a clearly dominant Glaser coupling, together with a multitude of other side products. Importantly, control experiments with reactants lacking the halogen functionalization reveal the Glaser coupling to be absent and instead show the prevalence of non-dehydrogenative head-to-head alkyne coupling. We perform scanning tunneling spectroscopy on a rich variety of the product structures obtained in these experiments, providing key insights into the strong dependence of their HOMO-LUMO gaps on the nature of the intramolecular coupling. A clear trend is found of a decreasing gap that is correlated with the conversion of triple bonds to double bonds via hydrogenation and to higher levels of cyclization, particularly with nonbenzenoid product structures. We rationalize each of the studied cases.The control of molecular orientation and ordering of liquid crystal (LC) organic semiconductor (OSC) for high-performance and thermally stable organic thin-film transistors is investigated. https://www.selleckchem.com/products/rbn013209.html A liquid crystalline molecule, 2-(4-dodecyl thiophenyl)[1]dibenzothiopheno[6,5-b6',5'-f]-thieno[3,2-b]thiophene (C12-Th-DBTTT) is synthesized, showing the highly ordered smectic X (SmX) phase, demonstrating molecular reorganization via thermal annealing. The resulting thermally evaporated polycrystalline film and solution-sheared thin film show high charge carrier mobilities of 9.08 and 27.34 cm2 V-1 s-1, respectively. Atomic force microscopy and grazing-incidence X-ray diffraction analyses prove that the random SmA1-like structure (smectic monolayer) is reorganized to the highly ordered SmA2-like structure (smectic bilayer) of C12-Ph-DBTTT at the crystal-SmX transition temperature region. Because of the strong intermolecular interactions between rigid DBTTT cores, the thin film devices of C12-Th-DBTTT show excellent thermal stability up to 300 °C, indicating that LC characterization of conventional OSC materials can obtain high electrical performance as well as superior thermal durability.Although high-capacity negative electrode materials are seen as a propitious strategy for improving the performance of lithium-ion batteries (LIBs), their advancement is curbed by issues such as pulverization during the charge/discharge process and the formation of an unstable solid electrolyte interphase (SEI). In particular, electrolytes play a vital role in determining the properties of an SEI layer. Thus, in this study, we investigate the performance of a red phosphorus/acetylene black composite (P/AB) prepared by high-energy ball milling as a negative electrode material for LIBs using organic and ionic liquid (IL) electrolytes. Galvanostatic tests performed on half cells demonstrate high discharge capacities in the 1386-1700 mAh (g-P/AB)-1 range along with high Coulombic efficiencies of 85.3-88.2% in the first cycle, irrespective of the electrolyte used. Upon cycling, the Li[FSA]-[C2C1im][FSA] (FSA- = bis(fluorosulfonyl)amide and C2C1im+ = 1-ethyl-3-methylimidazolium) IL electrolyte (28 in mol) demonstrates a high capacity retention of 78.8% after 350 cycles, whereas significant capacity fading is observed in the Li[PF6] and Li[FSA] organic electrolytes. Electrochemical impedance spectroscopy conducted with cycling revealed lower interfacial resistance in the IL electrolyte than in the organic electrolytes. Scanning electron microscopy and X-ray photoelectron spectroscopy after cycling in different electrolytes evinced that the IL electrolyte facilitates the formation of a robust SEI layer comprising multiple layers of sulfur species resulting from FSA- decomposition. A P/AB|LiFePO4 full cell using the IL electrolyte showed superior capacity retention than organic electrolytes and a high energy density under ambient conditions. This work not only illuminates the improved performance of a phosphorous-based negative electrode alongside ionic liquid electrolytes but also displays a viable strategy for the development of high-performance LIBs, especially for large-scale applications.