Therefore, laboratory measurements of the flow resistivity and absorption coefficient are used. The resulting data is used for training two different machine learning models, an artificial neural network and a k-nearest neighbor approach. It can be shown that both models are able to predict the Biot parameters from the specimen's micro-scale with reasonable accuracy. Moreover, the detour via the Biot parameters allows the application of the process for application cases that lie beyond the scope of the initial database, for example, the material behavior for other sound fields or frequency ranges can be predicted. This makes the process particularly useful for material design and takes a step forward in the direction of tailoring materials specific to their application.Lipids are highly diverse in their composition, properties and distribution in different biological entities. We aim to establish the lipidomes of several insulin-sensitive tissues and to test their plasticity when divergent feeding regimens and lifestyles are imposed. Here, we report a proton nuclear magnetic resonance (1H-NMR) study of lipid abundance across 4 tissues of C57Bl6J male mice that includes the changes in the lipid profile after every lifestyle intervention. Every tissue analysed presented a specific lipid profile irrespective of interventions. Glycerolipids and fatty acids were most abundant in epididymal white adipose tissue (eWAT) followed by liver, whereas sterol lipids and phosphoglycerolipids were highly enriched in hypothalamus, and gastrocnemius had the lowest content in all lipid species compared to the other tissues. Both when subjected to a high-fat diet (HFD) and after a subsequent lifestyle intervention (INT), the lipidome of hypothalamus showed no changes. Gastrocnemius and liver revealed a pattern of increase in content in many lipid species after HFD followed by a regression to basal levels after INT, while eWAT lipidome was affected mainly by the fat composition of the administered diets and not their caloric density. Thus, the present study demonstrates a unique lipidome for each tissue modulated by caloric intake and dietary composition.Head and neck squamous cell carcinoma (HNSCC) is characterized by high rates of mortality and treatment-related morbidity, underscoring the urgent need for innovative and safe treatment strategies and diagnosis practices. Mitochondrial dysfunction is a hallmark of cancer and can lead to the accumulation of tricarboxylic acid cycle intermediates, such as succinate, which function as oncometabolites. In addition to its role in cancer development through epigenetic events, succinate is an extracellular signal transducer that modulates immune response, angiogenesis and cell invasion by activating its cognate receptor SUCNR1. Here, we explored the potential value of the circulating succinate and related genes in HNSCC diagnosis and prognosis. We determined the succinate levels in the serum of 66 pathologically confirmed, untreated patients with HNSCC and 20 healthy controls. We also surveyed the expression of the genes related to succinate metabolism and signaling in tumoral and nontumoral adjacent tissue and in nlite as a potentially valuable noninvasive biomarker for HNSCC diagnosis and prognosis.The coupling between range and azimuth dimensions is the main obstacle for highly squinted synthetic aperture radar (SAR) data focusing. Range walk correction (RWC) processing is effective to remove the linear coupling term, but the residual high order range cell migration (RCM) parts are spatial-variant in both range and azimuth dimensions. In this paper, we propose a precise spatial-variant range cell migration correction (RCMC) method with subaperture processing. The method contains two stages. Firstly, the main component of range-variant RCM is corrected in the coarse RCMC stage. Secondly, data are derived into azimuth subapertures (SAs), an SA-image-domain RCMC is developed by interp correction, where the SA image is obtained using a modified spectrum analysis (SPECAN) algorithm by establishing the relationship between Doppler frequency and residual spatial-variant RCM. In the proposed algorithm, precise compensation of space-variant RCM is implemented by SA processing, which is designed for a better practicality in real-time processing system. Simulated and real measured data experiments are designed to validate the effectiveness of the proposed approach for highly squinted SAR imaging.Cartilage is a non-innervated and non-vascularized tissue. It is composed of one main cell type, the chondrocyte, which governs homeostasis within the cartilage tissue, but has low metabolic activity. Articular cartilage undergoes substantial stresses that lead to chondral defects, and inevitably osteoarthritis (OA) due to the low intrinsic repair capacity of cartilage. OA remains an incurable degenerative disease. In this context, several dietary supplements have shown promising results, notably in the relief of OA symptoms. In this study, we investigated the effects of collagen hydrolysates derived from fish skin (Promerim®30 and Promerim®60) and fish cartilage (Promerim®40) on the phenotype and metabolism of human articular chondrocytes (HACs). First, we demonstrated the safety of Promerim® hydrolysates on HACs cultured in monolayers. Then we showed that, Promerim® hydrolysates can increase the HAC viability and proliferation, while decreasing HAC SA-β-galactosidase activity. To evaluate the effect of Promerim® on a more relevant model of culture, HAC were cultured as organoids in the presence of Promerim® hydrolysates with or without IL-1β to mimic an OA environment. https://www.selleckchem.com/products/Oridonin(Isodonol).html In such conditions, Promerim® hydrolysates led to a decrease in the transcript levels of some proteases that play a major role in the development of OA, such as Htra1 and metalloproteinase-1. Promerim® hydrolysates downregulated HtrA1 protein expression. In contrast, the treatment of cartilage organoids with Promerim® hydrolysates increased the neosynthesis of type I collagen (Promerim®30, 40 and 60) and type II collagen isoforms (Promerim®30 and 40), the latter being the major characteristic component of the cartilage extracellular matrix. Altogether, our results demonstrate that the use of Promerim® hydrolysates hold promise as complementary dietary supplements in combination with the current classical treatments or as a preventive therapy to delay the occurrence of OA in humans.