https://www.selleckchem.com/products/Nevirapine(Viramune).html Attention can be allocated to mental representations to select information from working memory. To date, it remains ambiguous whether such retroactive shifts of attention involve the inhibition of irrelevant information or the prioritization of relevant information. Investigating asymmetries in posterior alpha-band oscillations during an auditory retroactive cueing task, we aimed at differentiating those mechanisms. Participants were cued to attend two out of three sounds in an upcoming sound array. Importantly, the resulting working memory representation contained one laterally and one centrally presented item. A centrally presented retro-cue then indicated the lateral, the central, or both items as further relevant for the task (comparing the cued item(s) to a memory probe). Time-frequency analysis revealed opposing patterns of alpha lateralization depending on target eccentricity A contralateral decrease in alpha power in target lateral trials indicated the involvement of target prioritization. A contralateral increase in alpha power when the central item remained relevant (distractor lateral trials) suggested the de-prioritization of irrelevant information. No lateralization was observed when both items remained relevant, supporting the notion that auditory alpha lateralization is restricted to situations in which spatial information is task-relevant. Altogether, the data demonstrate that retroactive attentional deployment involves excitatory and inhibitory control mechanisms.Sphingolipids are one of the major components of cell membranes and are ubiquitous in eukaryotic organisms. Ceramide 2-aminoethylphosphonate (CAEP) of marine origin is a unique and abundant sphingophosphonolipid with a C-P bond. Although molluscs such as squids and bivalves, containing CAEP, are consumed globally, the dietary efficacy of CAEP is not understood. We investigated the efficacy of marine sphingophosphonolipids by stu