https://www.selleckchem.com/products/s-adenosyl-l-homocysteine.html The fluffy structure ZSM-5 zeolite and Au NPs nanocomposites show higher efficiency than traditional Au/ZSM-5 nanocomposites towards catalytic reduction of nitrophenols. Additionally, the experiments with different affecting factors (MWCNTs dosage, aging time, catalysts dosage, pH, initial 4-NP concentration, storage time and recycling times) were carried out to test general applicability of the nanocomposites. And the degradation of nitrophenols experiment was operated to explore the catalytic performance of the prepared nanocomposites in further environmental application. The detailed possible relationship between zeolite with fluffy structure and Au NPs is also proposed in the paper.In this work, the synthesis method and applications of nanocomposite polymer stabilized silver nanoparticles (AgNPs) are reported. 3-Aminophenyl boronic acid (3APBA) was used as a reductant of silver nitrate which acted as an oxidant for the polymerization of 3APBA through in situ chemical oxidative polymerization to poly(3-aminophenyl boronic acid) or PABA. The formation of PABA in the reaction mixture led to particle agglomeration owing to PABA poor solubility. However, in the presence of hydrophilic poly(vinyl alcohol) (PVA), PABA binds to the free hydroxyl group of PVA to form a composite polymer (PABA-PVA), which perfectly stabilized the formed AgNPs. Succinctly, PVA acted as a solubilizer and stabilizer for (PABA-PVA)AgNPs synthesis. Synthesis was optimized and sharp absorption peaks at 290 nm and 426 nm were observed, attributing to the π-π* transition of the benzenoid ring of PABA and the characteristic absorption spectrum of AgNPs, respectively. (PABA-PVA)AgNPs was characterized using UV-vis, TEM, FESEM, EDX, XRD, FTIR, TGA/DTG, DLS and zeta potential analysis. In addition, the antibacterial, antioxidant and metal chelating capacities of (PABA-PVA)AgNPs were evaluated. The (PABA-PVA)AgNPs exhibited significan