https://www.selleckchem.com/products/pf-07220060.html Yeasts can play important roles in promoting plant growth; however, little information is available in this regard for yeasts in water of bromeliad tanks. Here, we characterize the ability of 79 yeast isolates from tank bromeliad Vriesea minarum, an endangered species, to solubilize phosphate, secrete siderophores, and synthesize indole-3-acetic acid (IAA). The results showed that 67.8% of all assayed yeast isolates mobilized inorganic phosphate; 40.0% secreted siderophores; and 89.9% synthetized IAA and IAA-like compounds. Among the species studied, Carlosrosaea vrieseae UFMG-CM-Y6724 is highlighted for producing IAA (76.1 μg mL-1) and siderophores, and solubilizing phosphate. In addition, evaluation of the effects of filtrate containing IAA-like compounds produced by the C. vrieseae on the development and photosynthetic performance of V. minarum seedlings found it to improve seedling growth equal to that of commercial IAA. These results demonstrate that C. vrieseae can produce compounds with great potential for future use as biofertilizer agents.Infection by SARS-CoV-2, the causative agent of COVID-19, is critically connected with host metabolism. Through functional enrichment analysis, the present study aims to evaluate the biological processes involving host proteins interfered by SARS-CoV-2 to verify the potential metabolic impact of the infection. Furthermore, tissue enrichment analyses and differential gene expression of host proteins were applied to understand the interference by SARS-CoV-2 on tissue levels. Results based on functional and tissue-specific enrichment analyses, presented in this study, suggest that SARS-CoV-2, mediated interference on host proteins, can affect the metabolism and catabolism of molecular building blocks and control intracellular mechanisms, including gene expression in metabolism-related organs, to support viral demands. Thus, SARS-CoV-2 can broadly affect the host metabolism