https://www.selleckchem.com/products/dtnb.html Cupriavidus metallidurans, and in particular type strain CH34, became a model bacterium to study bacterial resistance to metals. Although nowadays the routine use of a wide variety of omics and molecular techniques allow refining, deepening and expanding our knowledge on adaptation and resistance to metals, these were not available at the onset of C. metallidurans research starting from its isolation in 1976. This minireview describes the early research and legacy tools used to study its metal resistance determinants, characteristic megaplasmids, ecological niches and environmental applications. Consumption of animal-derived meat products is suspected as an important exposure route to antimicrobial resistance, as the presence of antimicrobial-resistant bacteria (ARB) along the beef supply chain is well documented. A retail-to-fork quantitative exposure assessment was established to compare consumers' exposure to various ARB due to the consumption of ground beef with and without "raised without antibiotics" claims and to inform potential exposure mitigation strategies related to consumer practices. The microbial agents evaluated included Escherichia coli, tetracycline-resistant (TETr) E. coli, third-generation cephalosporin-resistant E. coli,Salmonella enterica, TETrS. enterica, third-generation cephalosporin-resistant S. enterica, nalidixic acid-resistant S. enterica, Enterococcus spp., TETrEnterococcus spp., erythromycin-resistant Enterococcus spp., Staphylococcus aureus, and methicillin-resistant S. aureus. The final model outputs were the probability of exposure to at least 0 to 6 log CFU microorganisms per serving of ground beef at the time of consumption. It was estimated that tetracycline resistance was more prevalent in ground beef compared with other types of resistance, among which the predicted average probability of ingesting TETrEnterococcus was highest (6.2% of ingesting at least 0 log CFU per serving), fol