The incorporation of a TP fluorophore into the nanoprobe facilitated near-infrared excitation, which allowed the highly sensitive and specific imaging of Zn2+ in living cells and tissues at greater depths than possible previously. The TP-DNAzyme-MOFs nanoprobe achieved a low detection limit of 3.53 nM, extraordinary selectivity toward Zn2+, and a tissue signal penetration of 120 μm. More importantly, this nanoprobe was successfully used to monitor cell apoptosis, and this application of the DNAzyme-MOFs probe holds great potential for future use in biological studies and medical diagnostics.Nanometer-sized polycarboxylate ligands are interesting building blocks for metallasupramolecular chemistry, but access to these compounds is often limited by complicated synthetic pathways. Here, we describe a simple two-step protocol, which allows preparing linear and bent dicarboxylate ligands with lengths of up to 3 nm from commercially available compounds. The ligands are prepared by iron-templated polycondensation reactions involving arylboronic acids and nioxime. The final products contain two iron clathrochelate complexes and two terminal carboxyphenylene groups. To demonstrate that the new ligands are suitable for the construction of more complex molecular nanostructures, we have prepared a Cu-based metal-organic polyhedron, which represents the largest M4L4 cage described so far.The efficient conversion of CO2 to chemical fuels driven by solar energy is still a challenging research area in photosynthesis, in which the conversion efficiency greatly relies on photocatalytic coenzyme NADH regeneration. Herein, a photocatalyst/biocatalyst synergetic system based on a conjugated microporous polymer (CMP) was prepared for sustainable and highly selective photocatalytic reduction of CO2 to methanol. Two thiazolo[5,4-d]thiazole-linked CMPs (TZTZ-TA and TZTZ-TP) were designed and synthesized as photocatalysts. Slight skeleton modification led to a great difference in their photocatalytic performance. Triazine-based TZTZ-TA exhibited an unprecedentedly high NADH regeneration efficiency of 82.0% yield within 5 min. Furthermore, the in situ photocatalytic NADH regeneration system could integrate with three consecutive enzymes for efficient conversion of CO2 into methanol. This CMP-enzyme hybrid system provides a new avenue for accomplishing the liquid sunshine from CO2.We report the incorporation of large substituents based on heavy main-group elements that are atypical in ligand architectures to enhance dispersion interactions and, thereby, enhance enantioselectivity. Specifically, we prepared the chiral biaryl bisphosphine ligand (TMG-SYNPHOS) containing 3,5-bis(trimethylgermanyl)phenyl groups on phosphorus and applied this ligand to the challenging problem of enantioselective hydrofunctionalization reactions of 1,1-disubtituted alkenes. Indeed, TMG-SYNPHOS forms a copper complex that catalyzes hydroboration of 1,1-disubtituted alkenes with high levels of enantioselectivity, even when the two substituents are both primary alkyl groups. In addition, copper catalysts bearing ligands possessing germanyl groups were much more active for hydroboration than one derived from DTBM-SEGPHOS, a ligand containing 3,5-di-tert-butyl groups and widely used for copper-catalyzed hydrofunctionalization. This observation led to the identification of DTMGM-SEGPHOS, a bisphosphine ligand bearing 3,5-bis(trimethylgermanyl)-4-methoxyphenyl groups as the substituents on the phosphorus, as a new ligand that forms a highly active catalyst for hydroboration of unactivated 1,2-disubstituted alkenes, a class of substrates that has not readily undergone copper-catalyzed hydroboration previously. Computational studies revealed that the enantioselectivity and catalytic efficiency of the germanyl-substituted ligands is higher than that of the silyl and tert-butyl-substituted analogues because of attractive dispersion interactions between the bulky trimethylgermanyl groups on the ancillary ligand and the alkene substrate and that Pauli repulsive interactions tended to decrease enantioselectivity.To improve the sensing properties toward volatile organic compound gases, a preheating process was introduced in a miniature pulse-driven semiconductor gas sensor, using SnO2 nanoparticles. The miniature sensor went through a short preheating span at a high temperature before being cooled and then experienced a measurement span under heating; this is the double-pulse-driven mode. This operating profile resulted in the modification of the surface conditions of naked SnO2 nanoparticles to facilitate the adsorption of O2- and ethanol-based adsorbates. Temperature-programmed reaction measurement results show that ethanol gas was adsorbed onto the SnO2 surface at 30 °C, and the adsorption amount of ethanol and its byproducts was increased after ethanol exposure at high temperatures followed by cooling. The electrical resistance of the sensor in synthetic air increased as the preheating temperature increased. https://www.selleckchem.com/ The sensor responses, Si and Se, to 1 ppm ethanol at 250 °C were enhanced by introducing the preheating process; Si values at 250 °C with and without preheating at 300 °C are 40 and 15, respectively. The obtained improvements were attributed to an increase in O2- adsorption onto the SnO2 surface during the preheating phase. During the cooling phases, the adsorption of ethanol-based molecules onto the SnO2 surface and their condensation in the sensing layer contributed to the enhanced performance. In addition, the double-pulse-driven mode improves the recovery speed in the electrical resistance after gas detection. These improvements made in the sensing properties of the double-pulse-driven semiconductor gas sensors provide desirable advantages for healthcare and medical devices. The purpose of this study was to evaluate whether shear wave elastography (SWE) and the shear wave dispersion slope (SWD) obtained from 2-dimensional shear wave imaging (2D-SWI) of the gallbladder (GB) bed of the liver could be helpful in the diagnosis of acute cholecystitis. We included 44 patients referred for abdominal ultrasonography (US) under the impression of acute cholecystitis from April 2018 to March 2019. Patients with chronic liver disease were excluded from this study. In addition to routine upper abdominal US, we performed 2D-SWI including liver stiffness measurements by SWE and SWD, which reflects tissue viscosity. 2D-SWI was performed at the GB bed of the liver through the right intercostal approach at least 3 times with different frames. We assessed typical US findings and the added value of 2D-SWI in diagnosing acute cholecystitis. Histopathologic results of surgical specimens were used as the standard of reference. If a surgical specimen was unavailable, a bile fluid test or clinical follow-up for more than 3 months served as the reference standard.