Regulating the thin-filament length in muscle is crucial for controlling the number of myosin motors that generate power. https://www.selleckchem.com/products/tasquinimod.html The giant protein nebulin forms a long slender filament that associates along the length of the thin filament in skeletal muscle with functions that remain largely obscure. Here nebulin's role in thin-filament length regulation was investigated by targeting entire super-repeats in the Neb gene; nebulin was either shortened or lengthened by 115 nm. Its effect on thin-filament length was studied using high-resolution structural and functional techniques. Results revealed that thin-filament length is strictly regulated by the length of nebulin in fast muscles. Nebulin's control is less tight in slow muscle types where a distal nebulin-free thin-filament segment exists, the length of which was found to be regulated by leiomodin-2 (Lmod2). We propose that strict length control by nebulin promotes high-speed shortening and that dual-regulation by nebulin/Lmod2 enhances contraction efficiency.Circular RNAs (circRNAs) are a large family of newly identified transcripts, and their physiological roles and evolutionary significance require further characterization. Here, we identify circRNAs generated from a conserved reproductive gene, Boule, in species from Drosophila to humans. Flies missing circular Boule (circBoule) RNAs display decreased male fertility, and sperm of circBoule knockout mice exhibit decreased fertilization capacity, when under heat stress conditions. During spermatogenesis, fly circBoule RNAs interact with heat shock proteins (HSPs) Hsc4 and Hsp60C, and mouse circBoule RNAs in sperm interact with HSPA2. circBoule RNAs regulate levels of HSPs by promoting their ubiquitination. The interaction between HSPA2 and circBoule RNAs is conserved in human sperm, and lower levels of the human circBoule RNAs circEx3-6 and circEx2-7 are found in asthenozoospermic sperm. Our findings reveal conserved physiological functions of circBoule RNAs in metazoans and suggest that specific circRNAs may be critical modulators of male reproductive function against stresses in animals.Hydrogen embrittlement is shown to proceed through a previously unidentified mechanism. Upon ingress to the microstructure, hydrogen promotes the formation of low-energy dislocation nanostructures. These are characterized by cell patterns whose misorientation increases with strain, which concomitantly attracts further hydrogen up to a critical amount inducing failure. The appearance of the failure zone resembles the "fish eye" associated to inclusions as stress concentrators, a commonly accepted cause for failure. It is shown that the actual crack initiation is the dislocation nanostructure and its associated strain partitioning.Endolysosomes are dynamic, intracellular compartments, regulating their surface-to-volume ratios to counteract membrane swelling or shrinkage caused by osmotic challenges upon tubulation and vesiculation events. While osmosensitivity has been extensively described on the plasma membrane, the mechanisms underlying endolysosomal surface-to-volume ratio changes and identities of involved ion channels remain elusive. Endolysosomes mediate endocytosis, exocytosis, cargo transport, and sorting of material for recycling or degradation. We demonstrate the endolysosomal cation channel TRPML2 to be hypotonicity/mechanosensitive, a feature crucial to its involvement in fast-recycling processes of immune cells. We demonstrate that the phosphoinositide binding pocket is required for TRPML2 hypotonicity-sensitivity, as substitution of L314 completely abrogates hypotonicity-sensitivity. Last, the hypotonicity-insensitive TRPML2 mutant L314R slows down the fast recycling pathway, corroborating the functional importance of hypotonicity-sensitive TRPML2. Our results highlight TRPML2 as an accelerator of endolysosomal trafficking by virtue of its hypotonicity-sensitivity, with implications in immune cell surveillance and viral trafficking.Rationally regulating the reactivity of molecules or functional groups is common in organic chemistry, both in laboratory and industry synthesis. This concept can be applied to inorganic nanomaterials, particularly two-dimensional black phosphorus (BP) nanosheets. The high reactivity of few-layer (even monolayer) BP is expected to be "shut down" when not required and to be resumed upon application. Here, we demonstrate a protective chemistry-based methodology for regulating BP reactivity. The protective step initiates from binding Al3+ with lone pair electrons from P to decrease the electron density on the BP surface, and ends with an oxygen/water-resistant layer through the self-assembly of hydrophobic 1,2-benzenedithiol (BDT) on BP/Al3+ This protective step yields a stabilized BP with low reactivity. Deprotection of the obtained BP/Al3+/BDT is achieved by chelator treatment, which removes Al3+ and BDT from the BP surface. The deprotective process recovers the electron density of BP and thus restores the reactivity of BP.Chaotic itinerancy is a frequently observed phenomenon in high-dimensional nonlinear dynamical systems and is characterized by itinerant transitions among multiple quasi-attractors. Several studies have pointed out that high-dimensional activity in animal brains can be observed to exhibit chaotic itinerancy, which is considered to play a critical role in the spontaneous behavior generation of animals. Thus, how to design desired chaotic itinerancy is a topic of great interest, particularly for neurorobotics researchers who wish to understand and implement autonomous behavioral controls. However, it is generally difficult to gain control over high-dimensional nonlinear dynamical systems. In this study, we propose a method for implementing chaotic itinerancy reproducibly in a high-dimensional chaotic neural network. We demonstrate that our method enables us to easily design both the trajectories of quasi-attractors and the transition rules among them simply by adjusting the limited number of system parameters and by using the intrinsic high-dimensional chaos.Genetic variation around the LRRK2 gene affects risk of both familial and sporadic Parkinson's disease (PD). However, the biological functions of LRRK2 remain incompletely understood. Here, we report that LRRK2 is recruited to lysosomes after exposure of cells to the lysosome membrane-rupturing agent LLOME. Using an unbiased proteomic screen, we identified the motor adaptor protein JIP4 as an LRRK2 partner at the lysosomal membrane. LRRK2 can recruit JIP4 to lysosomes in a kinase-dependent manner via the phosphorylation of RAB35 and RAB10. Using super-resolution live-cell imaging microscopy and FIB-SEM, we demonstrate that JIP4 promotes the formation of LAMP1-negative tubules that release membranous content from lysosomes. Thus, we describe a new process orchestrated by LRRK2, which we name LYTL (LYsosomal Tubulation/sorting driven by LRRK2), by which lysosomal tubulation is used to release vesicles from lysosomes. Given the central role of the lysosome in PD, LYTL is likely to be disease relevant.