https://www.selleckchem.com/products/jph203.html Correction of neuronal Itgb3 haplo-insufficiency by CRISPR activation rebalanced network excitability as effectively as blockade of mGluR5 with the selective antagonist MPEP. Our findings reveal an unexpected functional interaction between two ASD genes, thereby validating the pathogenicity of ITGB3 haplo-insufficiency. Further, they pave the way for exploiting CRISPR activation as gene therapy for normalizing gene dosage and network excitability in ASD.Alphavirus vectors based on self-amplifying RNA (saRNA) generate high and transient levels of transgene expression and induce innate immune responses, making them an interesting tool for antitumor therapy. These vectors are usually delivered as viral particles, but it is also possible to administer them as RNA. We evaluated this possibility by in vivo electroporation of Semliki Forest virus (SFV) saRNA for local treatment of murine colorectal MC38 subcutaneous tumors. Optimization of saRNA electroporation conditions in tumors was performed using an SFV vector coding for luciferase. Then we evaluated the therapeutic potential of this approach using an SFV saRNA coding for interleukin-12 (SFV-IL-12), a proinflammatory cytokine with potent antitumor effects. Delivery of SFV-IL-12 saRNA by electroporation led to improvement in tumor control and higher survival compared with mice treated with electroporation or with SFV-IL-12 saRNA alone. The antitumor efficacy of SFV-IL-12 saRNA electroporation increased by combination with systemic PD-1 blockade. This therapy, which was also validated in a hepatocellular carcinoma tumor model, suggests that local delivery of saRNA by electroporation could be an attractive strategy for cancer immunotherapy. This approach could have easy translation to the clinical practice, especially for percutaneously accessible tumors.Gene therapy would benefit from the effective editing of targeted cells with CRISPR-Cas9 tools. However, it is difficult