https://www.selleckchem.com/products/bezafibrate.html Our current understanding of enzymatic polysaccharide degradation has come from a huge number of in vitro studies with purified enzymes. While this vast body of work has been invaluable in identifying and characterizing novel mechanisms of action and engineering desirable traits into these enzymes, a comprehensive picture of how these enzymes work as part of a native in vivo system is less clear. Recently, several model bacteria have emerged with genetic systems that allow for a more nuanced study of carbohydrate active enzymes (CAZymes) and how their activity affects bacterial carbon metabolism. With these bacterial model systems, it is now possible to not only study a single nutrient system in isolation (i.e., carbohydrate degradation and carbon metabolism), but also how multiple systems are integrated. Given that most environmental polysaccharides are carbon rich but nitrogen poor (e.g., lignocellulose), the interplay between carbon and nitrogen metabolism in polysaccharide-degrading bacteria can now be stup the energy expenditure of CAZyme production and export. • Due to the nitrogen deficiency of insoluble polysaccharide-containing substrates, Gram-negative and Gram-positive polysaccharide degraders have a diverse set of strategies for supplementation and assimilation. • Future work needs to precisely characterize the energetic expenditures of CAZyme deployment and bolster our understanding of how carbon and nitrogen metabolism are integrated in both Gram-negative and Gram-positive polysaccharide-degrading bacteria, as both of these will significantly influence a given bacterium's suitability for biotechnology applications.Carbon nanomaterials, due to their catalytic activity and high surface area, have potential as cell immobilization supports to increase the production of xylanase. Recombinant Kluyveromyces lactis used for xylanase production was integrated into a polymeric gel network with carbon nanomate