https://www.selleckchem.com/products/ly-3475070.html Four types of 2D columnar mesophase composed of SDS cylindrical micelles and dendrimers were accommodated within the interstitial tunnels, including the hexagonal columnar phase (Colhex), simple rectangular columnar phase (Colsr), oblique columnar phase (Colob) and centered rectangular columnar phase (Colcr). A detailed analysis of the geometry of the dendrimer in the columnar mesophases revealed that the structural transition was governed by the interplay among the lateral and axial deformations of the dendrimer, and the deformation of the SDS micelle cross section for achieving effective charge matching and accommodation of the dendrimer. The present study demonstrated the power of the dendrimer in directing the long-range ordered packing of oppositely charged cylinders to yield a rich structural polymorphism of the columnar mesophase that may be exploited for the development of functional materials.Imidazolium Ionic Liquids (ILs) have been found to exhibit unusual nanostructuring behavior below their glass transition temperatures (Tg), which is ascribed to rearrangements in nonpolar domains formed by segregated alkyl chains. However, the dimensions required for such highly cooperative bulk phenomena are still unknown. In this work, we for the first time, investigate the effect of nanoconfinement on structural anomalies in imidazolium ILs. For this purpose, a series of ILs were embedded into the cavities of metal-organic framework (MOF) ZIF-8 and investigated using spin probes and Electron Paramagnetic Resonance (EPR) spectroscopy. The unusual nanostructuring near Tg, previously known for bulk ILs, was also observed for such nanoconfined ILs, and the amplitude of the anomaly was found to be dependent on the structure of the IL, thus showing the effects of molecular packing inside the MOF cavity. The first observation of structural anomalies in nanoconfined ILs opens perspectives for designing smart materials exh