A bifunctional secondary phosphine oxide (SPO) ligand-controlled method was developed for Ni-Al-catalyzed nonchelated dual C-H annulation of arylformamides with alkynes, providing a series of substituted amide-containing heterocycles in ≤97% yield. The SPO-bound bimetallic catalysis proved to be critical to the reaction efficiency.This work discloses an electrochemical oxidative cross-coupling of amines with aryl and aliphatic isocyanides. In an undivided cell, the reaction proceeds without involving any transition-metal catalyst, oxidant, or toxic reagents providing carbodiimides in good yields, thereby circumventing stoichiometric chemical oxidants, with H2 as the only byproduct. https://www.selleckchem.com/products/ulonivirine.html Moreover, carbodiimides were in situ converted into unsymmetrical ureas in moderate to good yields using an electricity ON-OFF strategy.The dissipative particle dynamics (DPD) technique was employed to design multiple microfluidic devices for investigating the motion of bioparticles at low Reynolds numbers. A DPD in-house FORTRAN code was developed to simulate the trajectories of two microparticles in the presence of hydrodynamic and transverse deflecting force fields via considering interparticle interaction forces. The particle-particle interactions were described by using a simplified version of the Morse potential. The transverse deflecting force considered in this microfluidic application was the dielectrophoresis (DEP) force. Multiple microfluidic devices with different configurations of microelectrodes were numerically designed to investigate the dielectrophoretic behavior of bioparticles for their trajectories and the focusing of bioparticles into a single stream in the middle of the microchannel. The DPD simulation results were verified and validated against previously reported numerical and experimental works in the literature. The computationally designed microdevices were fabricated by employing standard lithographic techniques, and experiments were conducted via taking red blood cells as the representative bioparticles. The experimental results for the trajectories and focusing showed good agreement with the numerical results.Cellular mechanics play a crucial role in tissue homeostasis and are often misregulated in disease. Traction force microscopy is one of the key methods that has enabled researchers to study fundamental aspects of mechanobiology; however, traction force microscopy is limited by poor resolution. Here, we propose a simplified protocol and imaging strategy that enhances the output of traction force microscopy by increasing i) achievable bead density and ii) the accuracy of bead tracking. Our approach relies on super-resolution microscopy, enabled by fluorescence fluctuation analysis. Our pipeline can be used on spinning-disk confocal or widefield microscopes and is compatible with available analysis software. In addition, we demonstrate that our workflow can be used to gain biologically relevant information and is suitable for fast long-term live measurement of traction forces even in light-sensitive cells. Finally, using fluctuation-based traction force microscopy, we observe that filopodia align to the force field generated by focal adhesions.Polaritons in two-dimensional (2D) materials have shown their unique capabilities to concentrate light into deep subwavelength scales. Precise control of the excitation and propagation of 2D polaritons has remained a central challenge for future on-chip nanophotonic devices and circuits. To solve this issue, we exploit Cherenkov radiation, a classic physical phenomenon that occurs when a charged particle moves at a velocity greater than the phase velocity of light in that medium, in low-dimensional material heterostructures. Here, we report an experimental observation of Cherenkov phonon polariton wakes emitted by superluminal one-dimensional plasmon polaritons in a silver nanowire and hexagonal boron nitride heterostructure using near-field infrared nanoscopy. The observed Cherenkov radiation direction and radiation rate exhibit large tunability through varying the excitation frequency. Such tunable Cherenkov phonon polaritons provide opportunities for novel deep subwavelength-scale manipulation of light and nanoscale control of energy flow in low-dimensional material heterostructures.Miniaturized stretchable strain sensors are key components in E-skins for applications such as personalized health-monitoring, body motion perception, and human-machine interfaces. However, it remains a big challenge to fabricate miniaturized stretchable strain sensors with high imperceptibility. Here, we reported for the first time novel ultraminiaturized stretchable strain sensors based on single centimeter-long silicon nanowires (cm-SiNWs). With the diameter of the active materials even smaller than that of spider silks, these sensors are highly imperceptible. They exhibit a large strain sensing range (>45%) and a high durability (>10 000 cycles). Their optimum strain sensing ranges could be modulated by controlling the prestrains of the stretchable cm-SiNWs. On the basis of this capability, sensors with appropriate sensing ranges were chosen to respectively monitor large and subtle human motions including joint motion, swallow, and touch. The strategy of applying single cm-SiNWs in stretchable sensors would open new doors to fabricate ultraminiaturized stretchable devices.Disproportionation of pioglitazone hydrochloride (PioHCl), leading to the free base formation, was observed in tablet formulations containing basic excipients such as magnesium stearate (Koranne et al, Mol. Pharmaceutics, 2017, 14, 1133-1144). The nature and concentration of excipients, by modulating the microenvironmental acidity (measured as pHeq), governed the disproportionation reaction. In the current work, we hypothesized that the addition of an organic acid, by lowering the pHeq, can stabilize PioHCl. Powder blends containing PioHCl, magnesium stearate and each oxalic, maleic, tartaric, fumaric, and glutaric acid were stored at 40 °C/75% RH for 15 days. The concentration of crystalline free base, a product of the disproportionation reaction, was quantified using synchrotron radiation. The pHeq of the powder blends was measured via ionization of probe molecules deposited on the surface. In general, the stronger the acid, the lower the pHeq of the formulation blend and more effective it was in stabilizing PioHCl and preventing disproportionation.