https://www.selleckchem.com/products/gc376-sodium.html This distance depends on the required angle of fiber winding, the radius of the frame, and the geometric parameters of the fiber-processing head. The coordination of the speed of winding the fibers on the frame and the speed of the passage of the frame through the winding head is also considered. Determining the correct distance of winding the fibers from the corresponding guide-line of fiber-processing head and right coordination of the winding speed and the speed of passage of the frame through the fiber-processing head ensure compliance of the required angles of fiber windings on the frame and homogeneity of winding fibers, which are the two of the most important prerequisites for producing a quality composite frame. The derived theory is well verified on a practical experimental example.Positron emission tomography (PET) is one of the commonly used scanning techniques. Medical staff manually calculate the estimated scan time for each PET device. However, the number of PET scanning devices is small, the number of patients is large, and there are many changes including rescanning requirements, which makes it very error-prone, puts pressure on staff, and causes trouble for patients and their families. Although previous studies proposed algorithms for specific inspections, there is currently no research on improving the PET process. This paper proposes a real-time automatic scheduling and control system for PET patients with wearable sensors. The system can automatically schedule, estimate and instantly update the time of various tasks, and automatically allocate beds and announce schedule information in real time. We implemented this system, collected time data of 200 actual patients, and put these data into the implementation program for simulation and comparison. The average time difference between manual and automatic scheduling was 7.32 min, and it could reduce the average examination time of 82% of patient