Organosilicon compounds are important reagents and synthetic intermediates that play a key role in the construction of new materials and complex products. Here we show a highly diastereoselective rhodium-catalyzed cycloisomerization of 1,6-dienes, in which the use of (EtO)3 SiH accelerates the intramolecular cyclization reaction to afford a novel spiro-fused succinimide and pyrazolone derivatives in moderate to excellent yields as a single diastereoisomer. The proposed mechanism involves an active Rh-H species from the hydrosilane that is the H-donor in this spiro-type cycloisomerization reaction. Non-invasive determination of mitochondrial capacity via near infrared spectroscopy (NIRS) typically involves voluntary exercise of a single muscle group followed by as many as 26 brief ischemic cuff occlusions to determine a single recovery rate constant (k). To determine the within- and between-visit repeatability of a shortened bilateral NIRS protocol, and to establish the feasibility of hamstring k measurements. Sixteen young (eight women, eight men; 22±3years) active adults underwent a bilateral electrical stimulation protocol in which multiple (n=4) measurements of k for the vastus lateralis (VL) and medial hamstring (MH) muscles were determined on two visits. Repeatability (CV% and intraclass correlations, ICC) and equivalency across visits were assessed for both muscles. Mean k values in the VL were consistent with published values and within-visit ICCs were moderately high for both muscles in both sexes. In men, average k values on visit 2 were within 1% (VL muscle) and 5% (MH muscle) of the values on visit 1 (all p>0.78). In women, average k values were 10%-15% lower on visit 2 (p=0.01 and p=0.15 for MH and VL) with the largest between-visit differences in a subset of participants with the most days between visits. This bilateral NIRS protocol is time efficient and provides valid estimates of k in both sexes and muscle groups with acceptable within-visit repeatability. Lower than expected between-visit repeatability in some participants reinforces the need for further investigation of this newly developed protocol to identify and control for experimental and behavioral sources of variation. This bilateral NIRS protocol is time efficient and provides valid estimates of k in both sexes and muscle groups with acceptable within-visit repeatability. Lower than expected between-visit repeatability in some participants reinforces the need for further investigation of this newly developed protocol to identify and control for experimental and behavioral sources of variation.A key part of the optimization of small molecules in pharmaceutical inhibitor development is to vary the molecular design to enhance complementarity of chemical features of the compound with the positioning of amino acids in the active site of a target enzyme. Typically this involves iterations of synthesis, to modify the compound, and biophysical assay, to assess the outcomes. Selective targeting of the anti-cancer carbonic anhydrase isoform XII (CA XII), this process is challenging because the overall fold is very similar across the twelve CA isoforms. To enhance drug development for CA XII we used a reverse engineering approach where mutation of the key six amino acids in the active site of human CA XII into the CA II isoform was performed to provide a protein chimera (chCA XII) which is amenable to structure-based compound optimization. Through determination of structural detail and affinity measurement of the interaction with over 60 compounds we observed that the compounds that bound CA XII more strongly than CA II, switched their preference and bound more strongly to the engineered chimera, chCA XII, based on CA II, but containing the 6 key amino acids from CA XII, behaved as CA XII in its compound recognition profile. The structures of the compounds in the chimeric active site also resembled those determined for complexes with CA XII, hence validating this protein engineering approach in the development of new inhibitors.Glycerol tri[3 H]oleate and [14 C]cholesteryl oleate double-labeled triglyceride-rich lipoprotein (TRL)-like particles are a well-established tool to trace the effect of lipid-modulating interventions on TRL metabolism. The routine generation of these particles involves sonication of a lipid mixture and subsequent fractionation of resulting particles into populations of different average size through density gradient ultracentrifugation. Here, we describe a simplified and more time-efficient procedure for preparing TRL-like particles without the need of fractionation. The simplified procedure shortened the preparation of particles from over 4 h to less than 2 h and generated particles with a higher yield, although with a smaller average size and more heterogeneous size distribution. In C57Bl/6J mice housed at thermoneutrality (30°C), the two preparations showed highly comparable plasma clearance and organ distribution of glycerol tri[3 H]oleate-derived [3 H]oleate and [14 C]cholesteryl oleate, as measures of lipolysis and core remnant uptake, respectively. Upon a cold challenge (14°C), plasma clearance was accelerated due to enhanced uptake of glycerol tri[3 H]oleate-derived [3 H]oleate by brown adipose tissue. The simplified procedure resulted in a modestly increased particle uptake by the spleen, while uptake by other organs was comparable between the two preparations. In conclusion, the simplified procedure accelerates the preparation of TRL-like particles for tracing in vivo TRL metabolism. We anticipate that this time-efficient procedure will be useful for incorporation of PET-traceable lipids to obtain more insight into human lipoprotein metabolism. Treatments for type 2 diabetes targeting baseline glucose levels but not postprandial glucose can result in normalized fasting blood glucose but suboptimal overall glycemic control (high glycated hemoglobin) residual hyperglycemia. In Japanese patients with type 2 diabetes the predominant pathophysiology is a lower insulin secretory capacity, and residual hyperglycemia is common with basal insulin treatment. https://www.selleckchem.com/products/bgb-290.html Single-injection, fixed-ratio combinations of glucagon-like peptide-1 receptor agonists and basal insulin have been developed. iGlarLixi (insulin glargine 100 units/mL [iGlar] lixisenatide ratio of 1 unit1µg) is for specific use in Japan. Post-hoc analysis of the LixiLan JP-L trial (NCT02752412) compared the effect of iGlarLixi with iGlar on this specific subpopulation with residual hyperglycemia. Outcomes at week 26 (based on the last observation carried forward) were assessed in patients in the modified intent-to-treat population with baseline residual hyperglycemia. Overall, 83 (32.5%) patients in the iGlarLixi group and 79 (30.