https://www.selleckchem.com/products/tetrahydropiperine.html Concretely, KD reduced the expression of IL-1β and IL-6 by inhibiting NF-κB p65 to suppress EE-mediated inflammation in rat liver. KD enhanced the expression of FXR and inhibited EE-mediated reduction of FXR in vitro and in vivo. It was the potential mechanism that KD mitigates cholestasis by increasing efflux and inhibiting uptake of bile acids via FXR-mediated induction of bile salt export pump (BSEP) and reduction of Na+-dependent taurocholate cotransport peptide (NTCP) to maintain bile acid homeostasis. Moreover, KD repressed the bile acid synthesis through reducing the expression of synthetic enzyme (CYP7A1), thereby normalizing the expression of metabolic enzyme (SULT2A1) of bile acid. In conclusion, our results revealed that KD may be an effective drug candidate for the treatment of cholestasis.Pseudomonas aeruginosa is one of the most common causes of healthcare-associated diseases and is among the top three priority pathogens listed by the World Health Organization (WHO). This Gram-negative pathogen is especially difficult to eradicate because it displays high intrinsic and acquired resistance to many antibiotics. In addition, growing concerns regarding the scarcity of antibiotics against multidrug-resistant (MDR) and extensively drug-resistant (XDR) P. aeruginosa infections necessitate alternative therapies. Bacteriophages, or phages, are viruses that target and infect bacterial cells, and they represent a promising candidate for combatting MDR infections. The aim of this review was to highlight the clinical pharmacology considerations of phage therapy, such as pharmacokinetics, formulation, and dosing, while addressing several challenges associated with phage therapeutics for MDR P. aeruginosa infections. Further studies assessing phage pharmacokinetics and pharmacodynamics will help to guide interested clinicians and phage researchers towards greater success with phage therapy for MDR P. aerugi