Yad fimbriae are currently viewed as versatile bacterial adhesins able to significantly mediate host or plant-pathogen recognition and contribute to the persistence of Escherichia coli in both the environment and within hosts. To date, however, the underlying adhesion process of Yad fimbriae on surfaces defined by controlled coating chemistries has not been evaluated on the relevant molecular scale. In this work, the interaction forces operational between Yad fimbriae expressed by genetically modified E. coli and self-assembled monolayers (SAM) differing in terms of charge, hydrophobicity or the nature of decorating sugar units are quantified by Single Molecule Force Spectroscopy (SMFS) on the nanoscale. It is found that the adhesion of Yad fimbriae onto probes functionalized with xylose is as strong as that measured with probes decorated with anti-Yad antibodies (ca. 80 to 300 pN). In contrast, the interactions of Yad with galactose, lactose, mannose, -OH, -NH2, -COOH and -CH3 terminated SAMs are clearly non-specific. Interpretation of SMFS measurements on the basis of worm-like-chain modeling for polypeptide nanomechanics further leads to the estimates of the maximal extension of Yad fimbriae upon stretching, of their persistence length and of their polydispersity. Finally, we show for the first time a strong correlation between the adhesion properties of Yad-decorated bacteria determined from conventional macroscopic counting methods and the molecular adhesion capacity of Yad fimbriae. This demonstration advocates the effort that should be made to understand on the nanoscale level the interactions between fimbriae and their cognate ligands. The results could further help the design of potential anti-adhesive molecules or surfaces to better fight against the virulence of bacterial pathogens.Metal-organic frameworks (MOFs) have emerged as attractive materials for energy and environmental-related applications owing to their structural, chemical and functional diversity over the last two decades. It is known that the poor carrier mobility and low electrical conductivity of ordinary MOFs severely limit their utility in practical applications. In the past 10 years, several MOF materials with high carrier mobility and outstanding electrical conductivity have received a worldwide upsurge of research interest and many techniques and strategies have been used to synthesize such MOFs. In this critical review, we provide an overview of the significant advances in the development of conductive MOFs reported until now. Their theoretical and synthetic design strategies, conductive mechanisms, electrical transport measurements, and applications are systematically summarized and discussed. https://www.selleckchem.com/products/Decitabine.html In addition, we will also give some discussions on challenges and perspectives in this exciting field.The extension of the E = E[N, v] functional for exploring chemical reactivity in a conceptual DFT context to include external electric fields is discussed. Concentrating on the case of a homogeneous field the corresponding response functions are identified and integrated, together with the conventional response functions such as permanent dipole moment and polarizability, in an extended response function tree associated with the E = E[N, v, ε] functional. In a case study on the dihalogens F2, Cl2, Br2, I2 the sensitivity of condensed atomic charges (∂q/∂ε) is linked to the polarizability of the halogen atoms. The non-integrated (∂ρ(r)/∂ε) response function, directly related to the field induced density change, is at the basis of these features. It reveals symmetry breaking for a perpendicular field, not detectable in its atom condensed counterpart, and accounts for the induced dipole moment directly related to the molecular polarizability. The much higher sensitivity of the electronic chemical potential/electe neutral system. This difference may be exploited, e.g. for an appropriately substituted H2CO, to generate enantioselectivity.The high information content of proteins drives their hierarchical assembly and complex function, including the organization of inorganic nanomaterials. Peptoids offer an organic scaffold very similar to proteins, but with a wider solubility range and easily tunable side chains and functional groups to create a variety of self-assembling architectures with atomic precision. If we could harness this paradigm and understand the factors that govern how they direct nucleation and assembly of inorganic materials to design order within such materials, new dimensions of function and fundamental science would emerge. In this work, peptoid tubes and sheets were explored as platforms to assemble colloidal quantum dots (QDs) and clusters. We have successfully synthesized CdSe QDs with difunctionalized capping ligands containing both carboxylic acid and thiol groups and mixed them with maleimide containing peptoids, to create an assembly of the QDs on the peptoid surface via a covalent linkage. This conjugation was seen to be successful with peptoid tubes, sheets and CdSe QDs and clusters. The particles were seen to have a high preference for the peptoid surface but non-specific interactions with carboxylic acid groups on the peptoids limited control over QD density via maleimide conjugation. Replacing the carboxylic acid groups with methoxy ethers, however, allowed for control over QD density as a function of maleimide concentration. 1H NMR analysis demonstrated that binding of QDs to peptoids involved a subset of surface ligands bound through the carboxylate functional group, allowing the distal thiol to engage in a covalent linkage to the maleimide. Overall, we have shown the compatibility and control of CdSe-peptoid interactions via a covalent linkage with varying peptoid structures and CdSe particles to create complex hybrid structures.The reaction kinetics of the isomers of the methylallyl radical with molecular oxygen has been studied in a flow tube reactor at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source storage ring. The radicals were generated by direct photodissociation of bromides or iodides at 213 nm. Experiments were conducted at room temperature and low pressures between 1 and 3 mbar using He as the buffer gas. Oxygen was employed in excess to maintain near pseudo-first-order reaction conditions. Concentration-time profiles of the radical were monitored by photoionisation. For the oxidation of 2-methylallyl (2-MA) and with k(2-MA + O2) = (5.1 ± 1.0) × 1011 cm3 mol-1 s-1, the rate constant was found to be in the high-pressure limit already at 1 mbar. In contrast, 1-methylallyl exists in two isomers, E- and Z-1-methylallyl. We selectively detected the E-conformer as well as a mixture of both isomers and observed almost identical rate constants within the uncertainty of the experiment. A small pressure dependence is observed with the rate constant increasing from k(1-MA + O2) = (3.