The electrochemical energy storage of lithium and sodium ions from aqueous solutions in binary metal oxides is of great interest for renewable energy storage applications. Binary metal oxides are of interest for aqueous energy storage due to their better structural stability and electronic conductivity and tunability of redox potentials. They have also been widely studied as novel electrodes for supercapacitors. The interactions between water and lithium/sodium ions, and water and binary metal oxide surface determine the electrochemical reactions and their long-term stability. Our results indicate that the aqueous sodium electrolyte has a stronger influence on the capacitance and cycling stability of the binary (Ca and Mo) metal oxide electrode than its lithium cousin. The symmetric cell in a two-electrode configuration was assembled with the proposed binary metal oxide, which shows an average discharge voltage of 1.2 V, delivering a specific capacitance of 72 F g-1 at a specific energy density of 32 W h kg-1 based on the total mass of the active materials. The development of highly concentrated aqueous electrolytes such as the "water-in-salt" electrolyte showed a larger electrochemical (voltage) window with enhanced storage capacitance for increasing the salt concentrations has also been discussed.A simple synthetic strategy for the preparation of high nitrogen content azo- and methylene bridged mixed energetic azoles was used. All new compounds were fully characterized by NMR and infrared spectroscopy, elemental analysis, and differential scanning calorimetry (DSC). In addition, the structures of energetic salts 7 and 10 were confirmed by single-crystal X-ray diffraction analysis. Detonation performances, calculated from heats of formation and experimental densities, thermal stabilities, and impact and friction sensitivities suggest possible applications in the field of insensitive energetic materials.Several propargyl functionalised substrates with different heteroatoms (N, O or S) have been used for the preparation of propargyl gold(i) phosphine complexes. https://www.selleckchem.com/products/ici-118551-ici-118-551.html The complexes were prepared in high yields either by reaction of the substrate with [Au(acac)PPh3] or by reaction of [AuCl(PPh3)] with potassium hydroxide and the substrate in methanol. Several of the complexes have been characterised by X-ray diffraction showing the presence of secondary bonds such as π-stacking and aurophilic interactions. The reaction of the propargyl gold(i) phosphine complexes with [Cu(NO3)(PPh3)2] or [Ag(OTf)(PPh3)2] afforded heterobimetallic complexes with π-coordination of Cu(PPh3)2 or Ag(PPh3)2 to the alkyne bond. When the substituent of the propargyl unit contained more strongly coordinating pyridine moieties, [(PyCH2)2NCH2C[triple bond, length as m-dash]CAuPPh3], coordination of the heterometal to the pyridine units occurred, displacing the phosphine groups and giving rise to a dimeric structure. The antiproliferative activity of the complexes against cisplatin resistant lung cancer cell line A549 was determined by MTT assay. The mononuclear gold complexes showed excellent activities with IC50 values less then 14 μM. Coordination of copper of silver to the alkynyl fragment resulted in a significant increase in activity suggesting a synergistic effect between the two metal centres.This review article explores the synthesis of the organosulfur(vi) species named sulfonimidates, focusing on their synthesis from sulfur(ii), sulfur(iv) and sulfur(vi) reagents, and investigates their recent resurgeance in interest as intermediates to access other important organosulfur compounds. Sulfonimidates have been utilized as precursors for polymers, sulfoximine and sulfonimidamide drug candidates and as alkyl transfer reagents.Garnet solid state electrolytes have been considered as potential candidates to enable next generation all solid state batteries (ASSBs). To facilitate the practical application of ASSBs, a high room temperature ionic conductivity and a low interfacial resistance between solid state electrolyte and electrodes are essential. In this work, we report a study of cerium doped Li5La3Nb2O12 through X-ray pair distribution function analysis, impedance spectroscopy and electrochemical testing. The successful cerium incorporation was confirmed by both X-ray diffraction refinement and X-ray pair distribution function analysis, showing the formation of an extensive solid solution. The local bond distances for Ce and Nb on the octahedral site were determined using X-ray pair distribution function analysis, illustrating the longer bond distances around Ce. This Ce doping strategy was shown to give a significant enhancement in conductivity (1.4 × 10-4 S cm-1 for Li5.75La3Nb1.25Ce0.75O12, which represents one of the highest conductivities for a garnet with less than 6 Li) as well as a dramatically decreased interfacial resistance (488 Ω cm2 for Li5.75La3Nb1.25Ce0.75O12). In order to demonstrate the potential of this doped system for use in ASSBs, the long term cycling of a Li//garnet//Li symmetric cell over 380 h has been demonstrated.Formation of a Cu(i)-alkylamine complex is found to be the key step for Cu(ii) ions to reduce to Cu(0) in the presence of glucose. Also, alkylamines in Cu nanowire synthesis serve triple roles as a reducing, complexation and capping agent. Alkylamines reduce Cu(ii) to Cu(i) at above 100 °C and protect the Cu(i) by forming a Cu ion-alkylamine coordination complex with a 1  2 ratio in an aqueous solution. With respect to the 1  2 complex ratio, the additional free alkylamines ensure a stable Cu(i)-alkylamine complex. After completion of Cu(i)-Cu(0) reduction by glucose, alkylamines remain on Cu(0) seeds to regulate the anisotropic growth of Cu nanocrystals. Long-chain (≥C16) alkylamines are found to help produce high-quality Cu nanowires, while short-chain (≤C12) alkylamines only produce CuO products. Furthermore, Cu nanowire synthesis is found to be sensitive to additional chemicals as they may destabilize Cu ion-alkylamine complexes. By comparing the Cu(i)-alkylamine and Maillard reaction mediated mechanism, the complete Cu nanowire synthesis process using glucose is revealed.