https://www.selleckchem.com/products/mrtx0902.html Colorectal cancers (CRCs) deficient in DNA mismatch repair (dMMR) contain abundant CD8+ tumor-infiltrating lymphocytes (TILs) responding to the abundant neoantigens from their unstable genomes. Priming of such tumor-targeted TILs first requires recruitment of CD8+ T cells into the tumors, implying that this is an essential prerequisite of successful dMMR anti-tumor immunity. We have discovered that selective recruitment and activation of systemic CD8+ T cells into dMMR CRCs strictly depend on overexpression of CCL5 and CXCL10 due to endogenous activation of cGAS/STING and type I IFN signaling by damaged DNA. TIL infiltration into orthotopic dMMR CRCs is neoantigen-independent and followed by induction of a resident memory-like phenotype key to the anti-tumor response. CCL5 and CXCL10 could be up-regulated by common chemotherapies in all CRCs, indicating that facilitating CD8+ T cell recruitment underlies their efficacy. Induction of CCL5 and CXCL10 thus represents a tractable therapeutic strategy to induce TIL recruitment into CRCs, where local priming can be maximized even in neoantigen-poor CRCs.The three classes of interferons (IFNs) share the ability to inhibit viral replication, activating cell transcriptional programs that regulate both innate and adaptive responses to viral and intracellular bacterial challenge. Due to their unique potency in regulating viral replication, and their association with numerous autoimmune diseases, the tightly orchestrated transcriptional regulation of IFNs has long been a subject of intense investigation. The protective role of early robust IFN responses in the context of infection with SARS-CoV-2 has further underscored the relevance of these pathways. In this viewpoint, rather than focusing on the downstream effects of IFN signaling (which have been extensively reviewed elsewhere), we will summarize the historical and current understanding of the stepwise assembly and function