The development of high-performance, environmentally friendly electrodeposition processes is critical for emerging coating technologies because current technologies use highly complex baths containing metal salts, supporting electrolytes, and various kinds of organic additives, which are problematic from both environmental and cost perspectives. Here, we show that a 200 μm-thin polyelectrolyte membrane sandwiched between electrodes effectively concentrates metal ions through interfacial penetration, which increases the conductance between the electrodes to 0.30 S and realizes solid-state electrodeposition that produces no mist, sludge, or even waste effluent. Both, experimental results and theoretical calculations, reveal that electrodeposition is controlled by ion penetration at the solution/polyelectrolyte interface, providing an intrinsically different ion-transport mechanism to that of conventional diffusion-controlled electrodeposition. The setup, which includes 0.50 mol L-1 copper sulfate and no additives, delivers a maximum current density of 300 mA cm-2, which is nearly fivefold higher than that of a current commercial plating bath containing organic additives.Traditional antifouling coatings are generally based on a single antifouling mechanism, which can hardly meet the needs of different occasions. Here, a single "kill-resist-renew trinity" polymeric coating integrating fouling killing, resistance, and releasing functions is reported. To achieve the design, a novel monomer-tertiary carboxybetaine ester acrylate with the antifouling group N-(2,4,6-trichlorophenyl)maleimide (TCB-TCPM) is synthesized and copolymerized with methacrylic anhydride via reversible addition-fragmentation chain transfer polymerization yielding a degradable hyperbranched polymer. Such a polymer at the surface/seawater is able to hydrolyze and degrade to short segments forming a dynamic surface (releasing). The hydrolysis of TCB-TCPM generates the antifouling groups TCPM (killing) and zwitterionic groups (resistance). Such a polymeric coating exhibits a controllable degradation rate, which increases with the degrees of branching. The antibacterial assay demonstrates that the antifouling ability arise from the synergistic effect of "attacking" and "defending". This study provides a new strategy to solve the challenging problem of marine biofouling.Polymer graftings (PGs) are widely employed in antifouling surfaces and drug delivery systems to regulate the interaction with a foreign environment. Through molecular dynamics simulations and scaling theory analysis, we investigate the physical antifouling properties of PGs via their collision behaviors. Compared with mushroom-like PGs with low grafting density, we find brush-like PGs with high grafting density could generate large deformation-induced entropic repulsive force during a collision, revealing a microscopic mechanism for the hop motions of polymer-grafted nanoparticles for drug delivery observed in experiment. In addition, the collision elasticity of PGs is found to decay with the collision velocity by a power law, i.e., a concise dynamic scaling despite the complex process involved, which is beyond expectation. These results elucidate the dynamic interacting mechanism of PGs, which are of immediate interest for a fundamental understanding of the antifouling performance of PGs and the rational design of PG-coated nanoparticles in nanomedicine for drug delivery.Graphene is widely used to enhance the electrochemical performance of anodes. However, graphene tends to be vertical with the lithium-ion (Li+) diffusion direction, and a few heterointerfaces are formed between graphene and active materials by point-to-point contact. Herein, a graphene quantum dots (GDs) tiling hollow porous SiO2 (HSiO2@GDs) anode is predicted by density functional theory (DFT) and is achieved by experiments. Due to the ultrasmall size, the tiling of GDs would provide Li+ a rapid diffusion channel and abundant heterointerfaces (face-to-face contact) between the GDs and the hollow porous SiO2 (HSiO2). Moreover, owing to the higher electrostatic potential of SiO2, the large-scale local electrical field from GDs to HSiO2 is established at the heterointerfaces, which provide extra Li+ storage sites and further facilitate the Li+ transfer. To our knowledge, the HSiO2@GDs shows the highest specific capacities at various current densities (such as ∼1100 mA h/g at 5 A/g and ∼2250 mA h/g at 0.2 A/g) among reported silicon oxides anodes and presents excellent cycling stability (∼1000 mA h/g after 2000 cycles at 3 A/g). Moreover, the design idea is available to design other widely studied graphene-containing anodes such as the Si, SnO2, TiO2, and MoS2.Uncontrolled hyperlipidemia has been associated with serious cardiovascular events. Statin use may not be optimal either due to low adherence or statin intolerance. https://www.selleckchem.com/products/SB939.html Although the definition of statin intolerance remains highly debatable, it can generally be viewed as any adverse reaction that limits its use including but not limited to myopathies and myalgias. After initial approval, utilization of PCSK9 inhibitors remained low, possibly due to cost or overly restrictive coverage criteria. With the reduction in list price by 60% to $5850 annually, and updated clinical outcome data, both alirocumab and evolocumab were more in line with the willingness-to-pay threshold. Managed care pharmacists can ensure coverage criteria are appropriately developed to give access to individuals who would benefit the most, while decreasing barriers to access. Additionally, pharmacists are well positioned to collaborate with other healthcare providers to increase adherence to traditional LDL-C-lowering agents and streamline prior authorization processing to increase approval rates.Nearly 93 million American adults have hyperlipidemia, a major risk factor for the development of atherosclerotic cardiovascular disease. Use of HMG-CoA reductase inhibitors (ie, statins) and ezetimibe have decreased hypercholesterolemia's prevalence in the past decade, but poor adherence is common and leads to scenarios where patients do not derive the greatest possible benefit. In addition, statin resistance may play a role when patients' LDL-C levels are not lowered to the expected extent despite good medication adherence. When statins fail to control hyperlipidemia, guidelines recommend furthering treatment by adding ezetimibe or a PCSK9 inhibitor. In November 2018, the American College of Cardiology and the American Heart Association updated their hyperlipidemia guideline. This revision recommends a more aggressive approach to hyperlipidemia. In patients who fail to respond to or cannot tolerate statins or ezetimibe, PCSK9 inhibitors are a reasonable treatment option. Large outcomes trials have compared the currently approved PCSK9 inhibitors with placebo and established that PCSK9 inhibitors lowered LDL-C by more than 50% below the statin-treated baseline and reduce cardiovascular outcomes.