https://www.selleckchem.com/products/apx2009.html roliferative LN. Low plasma ADMA may help to predict complete remission in proliferative LN patients treated with cyclophosphamide as induction therapy. Plasma ADMA may be a new biomarker to determine the pathological type of LN and predict the therapeutic effect. High plasma ADMA levels in combination with eGFR and complement C3 may be useful to diagnose diffuse proliferative LN. Low plasma ADMA may help to predict complete remission in proliferative LN patients treated with cyclophosphamide as induction therapy. Plasma ADMA may be a new biomarker to determine the pathological type of LN and predict the therapeutic effect. Chronic kidney disease (CKD) with known valve calcification (VC) places individuals at high risk of cardiovascular disease. The study of VC in CKD is challenging due to the lack of a suitable research model. Here, we established a rat model of multivalve calcification induced by subtotal nephrectomy and a high-phosphate (HP) diet and analyzed the valve characteristics. We established a CKD model in Sprague-Dawley rats by performing 5/6 nephrectomy (5/6Nx) followed by feeding with chow containing different phosphate concentrations for 8, 12, or 16 weeks. The rats were divided into 4 groups sham+normal phosphate (NP, 0.9% P), sham+high phosphate (HP, 2.0% P), 5/6Nx+NP, and 5/6Nx+HP. Serum creatinine (Scr), blood urea nitrogen (BUN), parathyroid hormone (PTH), calcium, phosphorus, and 24-h urine protein levels were investigated. Pathological examinations included histological characterization, safranin staining, Alcian blue staining, and von Kossa staining at different time points. Using nanoanalytical electicles mainly composed of phosphorus and calcium were observed in both the aortic and mitral valves by transmission electron microscopy and scanning electron microscopy (SEM). The main mineral component of the calcified aortic valve particles was hydroxyapatite [Ca (PO ) (OH)], as shown by X-ray di