https://www.selleckchem.com/products/loxo-292.html A series of bimagnetic heterostructured nanocrystals having an antiferromagnetic NiO core and a ferrimagnetic MnxNi1-xO and/or FiM Mn3O4 island nanophase overgrowth has been synthesized under varying aqueous solution pH conditions. The two-step self-assembly process employs a thermal decomposition method to synthesize NiO nanoparticles, followed by growth of the MnxNi1-xO and/or Mn3O4 nanophase over the NiO core using hydrothermal synthesis at pH values ranging from 2.4-7.0. The environmentally benign hydrothermal process involves pH control of the protonation vs hydroxylation reactions occurring at the nanoparticle surface. TEM analysis and Rietveld refinement of XRD data show that three distinct types of heterostructured nanocrystals occur NiO/MnxNi1-xO core-shell-like heterostructures at the pH of 2.4, mixed NiO/MnxNi1-xO and/or/Mn3O4 core-overgrowth structures for 2.4 4.5. The magnetic coercivity and exchange bias of the heterostructured nanocrystals vary systematically with the pH of the aqueous solutiopplications.Structural engineering in multiple scales permits the integration of exotic properties into a single material, which boosts the development of ultracompact multifunctional devices. Layered perovskites are capable of cross-linking efficient carrier transport originating from few-layer perovskite frameworks with extended functionalities contributed by designable bulky organic cations and nanostructures, thus providing a platform for multiscale material engineering. Herein, high-performance Stokes-parameter photodetectors for arbitrary polarized light detection are realized on the basis of solution-processed chiral-perovskite nanowire arrays. The chiral ammonium cations intercalated between the perovskite layers are responsive to circularly polarized light with a maximum anisotropy factor of 0.15, while the strictly aligned nanowires with the anisotropic dielectric function result in a large polarized ra