Understanding the mechanisms that regulate atherosclerotic plaque formation and evolution is a crucial step for developing treatment strategies that will prevent plaque progression and reduce cardiovascular events. Advances in signal processing and the miniaturization of medical devices have enabled the design of multimodality intravascular imaging catheters that allow complete and detailed assessment of plaque morphology and biology. However, a significant limitation of these novel imaging catheters is that they provide two-dimensional (2D) visualization of the lumen and vessel wall and thus they cannot portray vessel geometry and 3D lesion architecture. To address this limitation computer-based methodologies and user-friendly software have been developed. These are able to off-line process and fuse intravascular imaging data with X-ray or computed tomography coronary angiography (CTCA) to reconstruct coronary artery anatomy. The aim of this review article is to summarize the evolution in the field of coronary artery modeling; we thus present the first methodologies that were developed to model vessel geometry, highlight the modifications introduced in revised methods to overcome the limitations of the first approaches and discuss the challenges that need to be addressed, so these techniques can have broad application in clinical practice and research. Copyright © 2020 Kilic, Safi, Bajaj, Serruys, Kitslaar, Ramasamy, Tufaro, Onuma, Mathur, Torii, Baumbach and Bourantas.As human Tau undergoes pathologically relevant post-translational modifications when expressed in yeast, the use of humanized yeast models for the generation of novel Tau monoclonal antibodies has previously been proven to be successful. In this study, human Tau2N4R-ΔK280 purified from yeast was used for the immunization of mice and subsequent selection of high affinity Tau-specific monoclonal antibodies. The characterization of four novel antibodies in different Tau model systems yielded a phosphorylation-dependent antibody (15A10), an antibody directed to the first microtubule-binding repeat domain (16B12), a carboxy-terminal antibody (20G10) and an antibody targeting an epitope on the hinge of the first and second amino-terminal insert (18F12). The latter was found to be conformation-dependent, suggesting structural differences between the Tau splicing isoforms and allowing insight in the roles played by the amino-terminal inserts. As this monoclonal antibody also has the capacity to detect tangle-like structures in different transgenic Tau mice and neurofibrillary tangles in brain sections of patients diagnosed with Alzheimer's disease, we also tested the diagnostic potential of 18F12 in a pilot study and found this monoclonal antibody to have the ability to discriminate Alzheimer's disease patients from control individuals based on increased Tau levels in the cerebrospinal fluid. Copyright © 2020 Verelst, Geukens, Eddarkaoui, Vliegen, De Smidt, Rosseels, Franssens, Molenberghs, Francois, Stoops, Bjerke, Engelborghs, Laghmouchi, Carmans, Buée, Vanmechelen, Winderickx and Thomas.The Dietary Reference Intakes (DRI)-monograph (USA/Canada) states that the estimated average requirement (EAR) of vitamin E for men and women of any age is 12 mg/day. The EAR value is based on in vitro hemolysis in young males; a surrogate endpoint without any direct validity. The EAR is then extrapolated to females and older males. The validity of the EAR level is therefore questionable. Total mortality is an outcome of direct clinical relevance. Investigating the effect of long-term dietary vitamin E intake level on mortality in a randomized trial is, however, not feasible. Nevertheless, the effect of dietary vitamin E intake can be investigated indirectly from the effects of a fixed-level vitamin E supplement administered to participants on variable levels of dietary vitamin E intake. If vitamin E intake below the EAR is harmful, then vitamin E supplement should be beneficial to those people who have dietary vitamin E intake level below the EAR. The purpose of this study was to analyze the association betws. Trial registration ClinicalTrials.gov, identifier NCT00342992. Copyright © 2020 Hemilä.Background Overweight and obesity are prevalent in schoolchildren due to dietary habits and lack of exercise. These children are prone to metabolic syndrome (MS) and future risk of type 2 diabetes mellitus and cardiovascular diseases. Materials and Methods This cross-sectional study was conducted in Bhubaneswar City, Eastern India, among schoolchildren. Obesity and overweight were determined by the Indian Academy of Pediatrics guideline. Fasting venous blood samples were taken for insulin, blood glucose, and lipid levels measurement. Blood pressure was measured as per the protocol. The International Diabetic Federation (IDF) criteria for the definition of MS were followed. Insulin resistance was determined by a homeostatic model assessment (HOMA-IR). Results A total of 1,930 children were screened, of which 545 (28.2%) were overweight and obese. The male to female ratio was 1.27. The overall prevalence of MS was 21.8% (11% in 6 to ≤10 years old and 30.6% in 11 to 16 years old). A history of cardiovascular disease, diabetes, obesity, and hypertension in the family was present in 42.7%. Acanthosis nigricans was present in 46.4%. A history of exclusive breast feeding for 6 months was present in 68.1%. The mean HOMA-IR in children with MS was 5.46 compared to 2.18 in those without MS (insulin resistance was more common in children with MS). Conclusions The present study found a higher prevalence of MS and insulin resistance in schoolchildren from Eastern India who are overweight/obese. Copyright © 2020 Das, Mangaraj, Panigrahi, Satapathy, Mahapatro and Ray.Immune thrombocytopenia (ITP) is an autoimmune disease which arises due to self-destruction of circulating platelets. https://www.selleckchem.com/products/bpv-hopic.html Failure to respond or maintain a response to first-line treatment can lead to refractory/relapsed (R/R) ITP. The mechanism remains complicated and lacks a standard clinical treatment. Sirolimus (SRL) is a mammalian target of rapamycin (mTOR) inhibitor that has been demonstrated to inhibit lymphocyte activity, indicating potential for SRL in treatment of ITP. Activation of the mTOR pathway in autoimmune diseases suggests that SRL might be a useful agent for treating ITP. Accordingly, we initiated an open-label, prospective clinical trial using SRL for patients with R/R ITP (ChiCTR-ONC-17012126). The trial enrolled 86 patients, each dosed with 2-4 mg/day of SRL. By the third month, 40% of patients (34 of 86) achieved complete remission (CR) and 45% of patients (39 of 86) achieved partial remission (PR), whereby establishing an overall response rate (ORR) of 85%. By 6 months of treatment, 41% of patients (32 of 78) achieved CR and 29% of patients (23 of 78) achieved PR, establishing an ORR of 70% without serious side effects.