All these effects could be reversed by phosphatidylinositol 3-kinase (PI3K) inhibitor, which indicated the PI3K/protein kinase B (AKT) might be the critical component of the PTEN effects during serum deficiency. In conclusion, our study indicated the role of the PTEN/PI3K/AKT pathway in serum deprivation-induced cytotoxicity in H9c2 cells.While hyperthermia (HT) is a promising modality for cancer treatment, the knowledge on mechanisms of its effect on cells is still limited. We have investigated DNA double-strand break (DSB) and apoptosis induced by HT. Umbilical cord blood lymphocytes (UCBL) were subjected to HT at 43 °C. We have treated cells for 1 h (1 h HT), 2 h (2 h HT) and by combined HT and ice treatment (both lasting 1 h). Enumeration of DSB by 53BP1/γH2AX DNA repair focus formation and early apoptosis by γH2AX pan-staining was conducted by automated fluorescent microscopy. Apoptotic stages and viability were assessed by the annexin/propidium iodide (PI) assay using flow cytometry 0, 18, and 42 h post-treatment. HT induced either immediate (2 h HT) or postponed (1 h HT) DNA damage. The levels of 53BP1 and γH2AX foci differed under the same treatment conditions, suggesting that the ratio of co-localized γH2AX/53BP1 foci to all γH2AX and also to all 53BP1 foci could be a valuable marker. The ratio of co-localized foci increased immediately after 2 h HT regardless the way of assessment. For the first time we show, by both annexin/PI and γH2AX pan-staining assay that apoptosis can be induced during or immediately after the 2 h HT treatment. Our results suggest that HT may induce DSB in dependence on treatment duration and post-treatment time due to inhibition of DNA repair pathways and that HT-induced apoptosis might be dependent or associated with DSB formation in human lymphocytes. Assessment of γH2AX pan-staining in lymphocytes affected by HT may represent a valuable marker of HT treatment side effects.Sulfonylureas (SUs) are suggested to accelerate the pancreatic β-cells mass loss via apoptosis. However, little is known whether calpains mediate this process. The aim of the present study is to evaluate the involvement of calpains in SUs-induced death of human pancreatic cancer (PC) cell line 1.2B4. The cells were exposed to glibenclamide, glimepiride and gliclazide for 72 h. The expression analysis of caspase-3 (CASP-3), TP53, calpain 1 (CAPN-1), calpain 2 (CAPN-2) and calpain 10 (CAPN-10) was detected using RT-PCR method. Intracellular Ca2+ concentrations, CASP-3 activity and total calpain activity were also evaluated. Our results have shown that glibenclamide and glimepiride decrease 1.2B4 cells viability with accompanied increase in intracellular Ca2+ concentration and increased expression of apoptosis-related CASP-3 and TP53. Gliclazide did not affect 1.2B4 cell viability and Ca2+ concentration, however, it downregulated CASP-3 and upregulated TP53. Interestingly, 50 μM glimepiride increased expression of CAPN-1, CAPN-2 and CAPN-10 whereas 50 μM glibenclamide solely upregulated CAPN-2 expression. We have shown that 10 μM and 50 μM glibenclamide and glimepiride increased the activity of CASP-3, but decreased total calpain activity. Our results suggest that calpains may be involved in glibenclamide- and glimepiride-induced death of PC cells. However, further investigation is required to confirm the engagement of calpains in SUs-mediated death of PC cells, especially studies on protein level of particular isoforms of calpains should be conducted.Mesothelioma is a cancer of the lung pleura primarily associated with inhalation of asbestos fibers. Multi-walled carbon nanotubes (MWCNTs) are engineered nanomaterials that pose a potential risk for mesothelioma due to properties that are similar to asbestos. Inhaled MWCNTs migrate to the pleura in rodents and some types cause mesothelioma. Like asbestos, there is a diversity of MWCNT types. We investigated the neoplastic potential of tangled (tMWCNT) versus rigid (rMWCNT) after chronic exposure using serial passages of rat mesothelial cells in vitro. Normal rat mesothelial (NRM2) cells were exposed to tMWCNTs or rMWCNTs for 45 weeks over 85 passages to determine if exposure resulted in transformation to a neoplastic phenotype. Rat mesothelioma (ME1) cells were used as a positive control. https://www.selleckchem.com/products/ly333531.html Osteopontin (OPN) mRNA was assayed as a biomarker of transformation by real time quantitative polymerase chain reaction (qPCR) and transformation was determined by a cell invasion assay. Exposure to rMWCNTs, but not tMWCNTs, resulted in transformation of NRM2 cells into an invasive phenotype that was similar to ME1 cells. Moreover, exposure of NRM2 cells to rMWCNTs increased OPN mRNA that correlated with cellular transformation. These data suggest that OPN is a potential biomarker that should be further investigated to screen the carcinogenicity of MWCNTs in vitro.Dopamine neurons in the ventral tegmental area (VTA) play a main role in processing both rewarding and aversive stimuli, and their response to salient stimuli is significantly shaped by afferents originating in the brainstem cholinergic nuclei. Aging is associated with a decline in dopaminergic activity and reduced response to positive reinforcement. We have used stereological techniques to examine, in adult and aged rats, the dopaminergic neurons and the cholinergic innervation of the VTA, and the cholinergic populations of the pedunculopontine tegmental (PPT) and laterodorsal tegmental (LDT) nuclei, which are the only source of cholinergic inputs to the VTA. In the VTA, there were no age-related variations in the number and size of tyrosine hydroxylase (TH)-immunoreactive neurons, but the density of cholinergic varicosities was reduced in aged rats. The total number of choline acetyltransferase (ChAT)-immunoreactive neurons in the PPT and LDT was unchanged, but their somas were hypertrophied in aged rats. Our results suggest that dysfunction of the cholinergic system might contribute for the age-associated deterioration of the brain reward system. Deterioration of lip function in the elderly is a form of oral hypofunction. It is important to understand age-related changes in lip function to improve oral health. This study aimed to quantitatively compare the maximum lip-closing force (LCF) and the ability to control LCF during voluntary lip-pursing movements between elderly and young adults and clarify the influence of aging on both measurements. Using a multidirectional LCF measurement system, we measured six-directional maximum LCFs (upper, upper right, lower right, lower, lower left, upper right) of 20 healthy elderly men (69.6±4.2 years) and 20 healthy young men (25.1±3.8 years). The ability to control the LCF in each direction was assessed based on the accuracy rate. The directional LCF and the ability to control LCF were compared between the elderly and young adults. The maximum directional LCF in the elderly adults was significantly smaller than that in the young adults in three directions from the lower lip; moreover, the accuracy rate of the elderly adults was significantly lower than that of young adults in five of the six directions.