tober 2015.Precise quantification of molecular targets in a biological sample across a wide dynamic range is a key requirement in many diagnostic procedures, such as monitoring response to therapy or detection of measurable residual disease. State of the art digital PCR assays provide for a dynamic range of four orders of magnitude. However digital assays are complex and require sophisticated microfluidic tools. Here we present an assay format that enables ultra-precise quantification of RNA targets in a single measurement across a dynamic range of more than six orders of magnitude. The approach is based on hydrogel beads that provide for microfluidic free compartmentalization of the sample as they are used as nanoreactors for reverse transcription, PCR amplification and combined real time and digital detection of gene transcripts. We have applied these nanoreactor beads for establishing an assay for the detection and quantification of BCR-ABL1 fusion transcripts. The assay has been characterized for its precision and linear dynamic range. A comparison of the new method against conventional real time RT-PCR analysis (reference method) with clinical samples from patients with chronic myeloid leukemia (CML) revealed excellent concordance with Pearsons correlation coefficient of 0.983 and slope of 1.08.This study uses mobility statistics combined with business census data for the eight Japanese prefectures with the highest coronavirus disease-2019 (COVID-19) infection rates to study the effect of mobility reductions on the effective reproduction number (i.e., the average number of secondary cases caused by one infected person). Mobility statistics are a relatively new data source created by compiling smartphone location data; they can be effectively used for understanding pandemics if integrated with epidemiological findings and other economic data sets. Based on data for the first wave of infections in Japan, we found that reductions targeting the hospitality industry were slightly more effective than restrictions on general business activities. Specifically, we found that to hold back the pandemic (that is, to reduce the effective reproduction number to one or less for all days), a 20%-35% reduction in weekly mobility is required, depending on the region. A lesser goal, 80% of days with one or less observed transmission, can be achieved with a 6%-30% reduction in weekly mobility. These are the results if other potential causes of spread are ignored; for a fuller picture, more careful observations, expanded data sets, and advanced statistical modeling are needed.Developing mathematical models to accurately predict microbial growth dynamics remains a key challenge in ecology, evolution, biotechnology, and public health. To reproduce and grow, microbes need to take up essential nutrients from the environment, and mathematical models classically assume that the nutrient uptake rate is a saturating function of the nutrient concentration. In nature, microbes experience different levels of nutrient availability at all environmental scales, yet parameters shaping the nutrient uptake function are commonly estimated for a single initial nutrient concentration. This hampers the models from accurately capturing microbial dynamics when the environmental conditions change. To address this problem, we conduct growth experiments for a range of micro-organisms, including human fungal pathogens, baker's yeast, and common coliform bacteria, and uncover the following patterns. We observed that the maximal nutrient uptake rate and biomass yield were both decreasing functions of initial nutrient concentration. While a functional form for the relationship between biomass yield and initial nutrient concentration has been previously derived from first metabolic principles, here we also derive the form of the relationship between maximal nutrient uptake rate and initial nutrient concentration. Incorporating these two functions into a model of microbial growth allows for variable growth parameters and enables us to substantially improve predictions for microbial dynamics in a range of initial nutrient concentrations, compared to keeping growth parameters fixed.This article examines men's involvement in an institutional gender equity award scheme and how their self-concept as allies develops over time. It draws specifically on a subset of qualitative data from the four men participating in a study involving in-depth interviews with university staff involved in the self-assessment team of one Australian institution's Science in Australia Gender Equality (SAGE) Athena SWAN pilot. Data related to the men's experiences is the article's focus. Key themes from the data include 1) men's motivations for engagement; 2) men's self-understandings as 'champions for change' 3) the barriers/risks associated with male championship; and 4) men's evolving perceptions and critiques of the male champions model. Findings show that men demonstrated personal growth and increased awareness through their participation in the pilot. Yet, their frustration with how equity and diversity was managed in their organisational context highlights pitfalls in the concept of a male 'champion'. This article provides timely guidance for institutions seeking to engage allies in gender equity initiatives.The interventions and outcomes in the ongoing COVID-19 pandemic are highly varied. https://www.selleckchem.com/ The disease and the interventions both impose costs and harm on society. Some interventions with particularly high costs may only be implemented briefly. The design of optimal policy requires consideration of many intervention scenarios. In this paper we investigate the optimal timing of interventions that are not sustainable for a long period. Specifically, we look at at the impact of a single short-term non-repeated intervention (a "one-shot intervention") on an epidemic and consider the impact of the intervention's timing. To minimize the total number infected, the intervention should start close to the peak so that there is minimal rebound once the intervention is stopped. To minimise the peak prevalence, it should start earlier, leading to initial reduction and then having a rebound to the same prevalence as the pre-intervention peak rather than one very large peak. To delay infections as much as possible (as might be appropriate if we expect improved interventions or treatments to be developed), earlier interventions have clear benefit.