https://www.selleckchem.com/products/nps-2143.html In this study, novel quinazolinone derivatives 7a-n were synthesized and evaluated against metabolic enzymes including α-glycosidase, acetylcholinesterase, butyrylcholinesterase, human carbonic anhydrase I, and II. These compounds exhibited high inhibitory activities in comparison to used standard inhibitors with Ki values in the range of 19.28-135.88 nM for α-glycosidase (Ki value for standard inhibitor = 187.71 nM), 0.68-23.01 nM for acetylcholinesterase (Ki value for standard inhibitor = 53.31 nM), 1.01-29.56 nM for butyrylcholinesterase (Ki value for standard inhibitor = 58.16 nM), 10.25-126.05 nM for human carbonic anhydrase I (Ki value for standard inhibitor = 248.18 nM), and 13.46-178.35 nM for human carbonic anhydrase II (Ki value for standard inhibitor = 323.72). Furthermore, the most potent compounds against each enzyme were selected in order to evaluate interaction modes of these compounds in the active site of the target enzyme. Cytotoxicity assay of the title compounds 7a-n against cancer cell lines MCF-7 and LNCaP demonstrated that these compounds do not show significant cytotoxic effects.A wide range of biophysical and theoretical analysis were employed to explore the formation of (α-syn) amyloid fibril formation as a model of Parkinson's disease in the presence of silica oxide nanoparticles (SiO2 NPs). Also, different cellular and molecular assays such as MTT, LDH, caspase, ROS, and qPCR were performed to reveal the α-syn amyloid fibrils-associated cytotoxicity against SH-SY5Y cells. Fluorescence measurements showed that SiO2 NPs accelerate the α-syn aggregation and exposure of hydrophobic moieties. Congo red absorbance, circular dichroism (CD), and transmission electron microscopy (TEM) analysis depicted the SiO2 NPs accelerated the formation of α-syn amyloid fibrils. Molecular docking study showed that SiO2 clusters preferably bind to the N-terminal of α-syn as the helix folding site. We also reali