https://www.selleckchem.com/products/cc-115.html ological approaches could be developed to improve the health of honey bees and the quality of bee products.Cancer-associated fibroblasts (CAFs) are prominent cells within the tumor microenvironment, by communicating with other cells within the tumor and by secreting the extracellular matrix components. The discovery of the immunogenic role of CAFs has made their study particularly attractive due to the potential applications in the field of cancer immunotherapy. Indeed, CAFs are highly involved in tumor immune evasion by physically impeding the immune system and interacting with both myeloid and lymphoid cells. However, CAFs do not represent a single cell entity but are divided into several subtypes with different functions that may be antagonistic. Considering that CAFs are orchestrators of the tumor microenvironment and modulate immune cells, targeting their functions may be a promising strategy. In this review, we provide an overview of (i) the mechanisms involved in immune regulation by CAFs and (ii) the therapeutic applications of CAFs modulation to improve the antitumor immune response and the efficacy of immunotherapy.Transition metal-based compounds have shown promising uses as therapeutic agents. Among their unique characteristics, these compounds are suitable for interaction with specific biological targets, making them important potential drugs to treat various diseases. Copper compounds, of which Casiopeinas® are an excellent example, have shown promising results as alternatives to current cancer therapies, in part because of their intercalative properties with DNA. Vanadium compounds have been extensively studied for their pharmacological properties and application, mostly in diabetes, although recently, there is a growing interest in testing their activity as anti-cancer agents. In the present work, two compounds, [Cu(Metf)(bipy)Cl]Cl·2H2O and [Cu(Impy)(Gly)(H2O)]VO3, were obtained and characterized by v