These findings unveil a plausible role for HCC-secreted LGALS3 in pre-metastatic niche and can suggest a promising strategy for clinical intervention in HCC bone-metastasis.Near infrared (NIR)-resonant gold nanoparticles (AuNPs) hold great promise in cancer diagnostics and treatment. However, translating the theranostic potential of AuNPs into clinical applications still remains a challenge due to the difficulty to improve the efficiency and specificity of tumor delivery in vivo as well as the clearance from liver and spleen to avoid off target toxicity. In this study, endothelial colony forming cells (ECFCs) are exploited as vehicles to deliver AuNPs to tumors. It is first demonstrated that ECFCs display a great capability to intake AuNPs without losing viability, and exert antitumor activity per se. Using a human melanoma xenograft mouse model, it is next demonstrated that AuNP-loaded ECFCs retain their capacity to migrate to tumor sites in vivo 1 day after injection and stay in the tumor mass for more than 1 week. In addition, it is demonstrated that ECFC-loaded AuNPs are efficiently cleared by the liver over time and do not elicit any sign of damage to healthy tissue.Organic printed electronics has proven its potential as an essential enabler for applications related to healthcare, entertainment, energy, and distributed intelligent objects. The possibility of exploiting solution-based and direct-writing production schemes further boosts the benefits offered by such technology, facilitating the implementation of cheap, conformable, bio-compatible electronic applications. The result shown in this work challenges the widespread assumption that such class of electronic devices is relegated to low-frequency operation, owing to the limited charge mobility of the materials and to the low spatial resolution achievable with conventional printing techniques. Here, it is shown that solution-processed and direct-written organic field-effect transistors can be carefully designed and fabricated so to achieve a maximum transition frequency of 160 MHz, unlocking an operational range that was not available before for organics. Such range was believed to be only accessible with more performing classes of semiconductor materials and/or more expensive fabrication schemes. The present achievement opens a route for cost- and energy-efficient manufacturability of flexible and conformable electronics with wireless-communication capabilities.Intraoperative diagnosis of metastatic tumors is of significant importance to the treatment of ovarian cancer. NIR-II fluorescence imaging holds great promise for facile detection of tumor in situ with high sensitivity and resolution. Herein, a kind of NIR-II fluorescent polymer dots (NIR-II Pdots) with high brightness is developed for real-time detection of metastatic ovarian cancer via NIR-II fluorescence imaging. The NIR-II Pdots are constructed via the self-assembly of NIR-II emissive aggregation induced emission luminogens (NIR-II AIEgens) and poly (styrene)-graft-poly(ethylene glycol) in water. Such NIR-II Pdots show very high fluorophore contents of nearly 30% and high quantum yield of 5.4% at emission maximum near 1020 nm. Further modification of the NIR-II Pdots with targeting peptides yields NIR-II Pdots-GnRH, which can afford enhanced affinity of NIR-II Pdots to ovarian cancer. Upon intravenous injection of the NIR-II Pdots, whole-body organs and vessels, peritoneal and lymphatic metastases of ovarian cancer are clearly visualized by NIR-II fluorescence imaging. Under the guidance of NIR-II fluorescence imaging, the metastatic foci with the diameter down to ≈2 mm can be facilely eliminated. The results indicate preclinical potential value of the NIR-II Pdots for metastatic ovarian cancer detection.Cell elongation along the division axis, or mitotic elongation, mediates proper segregation of chromosomes and other intracellular materials, and is required for completion of cell division. In three-dimensionally confining extracellular matrices, such as dense collagen gels, dividing cells must generate space to allow mitotic elongation to occur. In principle, cells can generate space for mitotic elongation during cell spreading, prior to mitosis, or via extracellular force generation or matrix degradation during mitosis. However, the processes by which cells drive mitotic elongation in collagen-rich extracellular matrices remains unclear. Here, it is shown that single cancer cells generate substantial pushing forces on the surrounding collagen extracellular matrix to drive cell division in confining collagen gels and allow mitotic elongation to proceed. Neither cell spreading, prior to mitosis, nor matrix degradation, during spreading or mitotic elongation, are found to be required for mitotic elongation. Mechanistically, laser ablation studies, pharmacological inhibition studies, and computational modeling establish that pushing forces generated during mitosis in collagen gels arise from a combination of interpolar spindle elongation and cytokinetic ring contraction. These results reveal a fundamental mechanism mediating cell division in confining extracellular matrices, providing insight into how tumor cells are able to proliferate in dense collagen-rich tissues.2D van der Waals heterostructures (vdWHs) offer tremendous opportunities in designing multifunctional electronic devices. Due to the ultrathin nature of 2D materials, the gate-induced change in charge density makes amplitude control possible, creating a new programmable unilateral rectifier. The study of 2D vdWHs-based reversible unilateral rectifier is lacking, although it can give rise to a new degree of freedom for modulating the output state. Here, a InSe/GeSe vdWH-FET is constructed as a gate-controllable half wave rectifier. The device exhibits stepless adjustment from forward to backward rectifying performance, leading to multiple operation states of output level. https://www.selleckchem.com/products/bi-3802.html Near-broken band alignment in the InSe/GeSe vdWH-FET is a crucial feature for high-performance reversible rectifier, which is shown to have backward and forward rectification ratio of 138 and 9631, respectively. Being further explored as a new bridge rectifier, the InSe/GeSe device has great potential in future gate-controllable alternating current/direct current convertor.