https://www.selleckchem.com/products/hydroxychloroquine-sulfate.html The aim of the present research is to investigate the efficiency of surface-modified magnetic nanoparticles for photocatalytic degradation of PCBs from transformer oil. Therefore, CMCD-Fe3O4@TiO2 was successfully produced via grafting of carboxymethyl-β-cyclodextrin (CM-β-CD) onto the core-shell titania magnetic nanoparticles surface. The photocatalytic efficiency of CMCD-Fe3O4@TiO2 for degradation of PCBs was systematically evaluated using an experimental design and the process parameters were optimized by response surface methodology (RSM). The central composite design (CCD) with four experimental parameters was used successfully in the modeling and optimization of photocatalytic efficiency in removing PCBs from transformer oil. ANOVA analysis confirmed a high R-squared value of 0.9769 describing the goodness of fit of the proposed model for the significance estimation of the individual and the interaction effects of variables. The optimal degradation yields of PCBs was achieved 83 % at a temperature of 25 °C, time of 16 min, the dosage of the catalyst of 8.35 mg and oil ethanol ratio of 15. These findings encourage the practical use of CM-β-CD-Fe3O4@TiO2 as a promising and alternative photocatalyst on an industrial scale for the cleaning of organic pollutants such as PCBs due to its environmental friendliness, the benefit of magnetic separation and good reusability after five times. Two-dimensional (2D) nanosheet-based nanocomposites have attracted intensive interest owing to the unique electronic and optical properties from their constituent phases and the synergistic effect from the heterojunctions. In this study, an interfacial coupled TiO2/g-C3N4 2D-2D heterostructure has been prepared via in situ growth of ultrathin 2D-TiO2 on dispersed g-C3N4 nanosheets. This strongly coupled 2D-2D TiO2/g-C3N4, different from the weakly bonded 2D-TiO2/g-C3N4 heterostructures produced by mechanical mixing,