https://www.selleckchem.com/products/A-966492.html Tarantulas represent some of the heaviest and most famous spiders. However, there is little information about the embryonic development of these spiders or their relatives (infraorder Mygalomorphae) and time-lapse recording of the embryonic development is entirely missing. I here describe the complete development of the Brazilian white knee tarantula, Acanthoscurria geniculata, in fixed and live embryos. The establishment of the blastoderm, the formation, migration and signalling of the cumulus and the shape changes that occur in the segment addition zone are analysed in detail. In addition, I show that there might be differences in the contraction process of early embryos of different theraphosid spider species. A new embryonic reference transcriptome was generated for this study and was used to clone and analyse the expression of several important developmental genes. Finally, I show that embryos of A. geniculata are amenable to tissue transplantation and bead insertion experiments. Using these functional approaches, I induced axis duplication in embryos via cumulus transplantation and ectopic activation of BMP signalling. Overall, the mygalomorph spider A. geniculata is a useful laboratory system to analyse evolutionary developmental questions, and the availability of such a system will help understanding conserved and divergent aspects of spider/chelicerate development.The article is devoted to the study of the role of intracellular mechanisms in the formation of radiation-induced genetic instability and its transgenerational effect in cells of different tissues of the descendants of Drosophila melanogaster mutant strains whose parents were exposed to chronic radiation (0.42 and 3.5 mGy/h). The level of DNA damage (alkali-labile sites (ALS), single-strand (SSB) and double-strand (DSB) breaks) in cells of somatic (nerve ganglia, imaginal discs) and generative (testis) tissues from directly irradiated animals and