In addition, similar to CBM 588, exogenously administered protectin D1 reduced inflammatory cytokines, while IL-10 and TGF-β1, works as anti-inflammatory cytokines, were increased. Our data revealed that CBM 588 activated 15-LOX to enhance protectin D1 production by increasing IL-4-producing CD4+ cell population in the intestinal tract. Additionally, CBM 588-induced protectin D1 clearly upregulated IL-10-producing CD4+ cells to control antibiotic-induced gut inflammation. We provide new insights into CBM 588-mediated lipid metabolism induction for the treatment of gut inflammatory diseases.Plant growth-promoting rhizobacteria (PGPRs) are able to activate induced systemic resistance (ISR) of the plants against phytopathogens. However, whether and how ISR can be activated by PGPRs in plants of the Rosa genus is unclear. The effects of PGPR Bacillus velezensis CLA178 and the pathogen Agrobacterium tumefaciens C58 on the growth, plant defense-related genes, hormones, and reactive oxygen species (ROS) in the rose plants were compared. Pretreatment with CLA178 significantly reduced crown gall tumor biomass and relieved the negative effects of the C58 pathogen on plant biomass, chlorophyll content, and photosynthesis of roses. Pretreatment of the roots with CLA178 activated ISR and significantly reduced disease severity. Pretreatment with CLA178 enhanced plant defense response to C58, including the accumulation of ROS, antioxidants, and plant hormones. Moreover, pretreatment with CLA178 enhanced C58-dependent induction of the expression of the genes related to the salicylic acid (SA) or ethylene (ET) signaling pathways. This result suggested that SA- and ET-signaling may participate in CLA178-mediated ISR in roses. Additional experiments in the Arabidopsis mutants showed that CLA178 triggered ISR against C58 in the pad4 and jar1 mutants and not in the etr1 and npr1 mutants. The ISR phenotypes of the Arabidopsis mutants indicated that CLA178-mediated ISR is dependent on the ET-signaling pathway in an NPR1-dependent manner. Overall, this study provides useful information to expand the application of PGPRs to protect the plants of the Rosa genus from phytopathogens.The rumen microbiota is strongly associated with host health, nutrient absorption, and adaptability. However, the composition, functioning and adaptability of rumen microbiota in Tibetan sheep (TS) across different phenological periods are unclear. In this study we used sequencing of the V4-V5 region of 16S rRNA, qPCR technology and metagenomics to investigate the adaption of rumen microbiota to forage in different stages of phenology. In a grassy period, due to the high nutritional quality of the forage, TS can produce high concentrations of NH3-N and short fatty acids by increasing the content of key bacteria in the rumen, such as Bacteroidetes, Prevotella, Succiniclasticum, Treponema, Butyrivibrio fibrisolvens, Fibrobacter succinogenes, Prevotella ruminicola, Ruminococcus albus, and Ruminococcus flavefaciens to aid in growth. In the withering period, there was a positive correlation between microorganisms which indicated the closely cooperation between microorganisms, and metagenomic analysis showed that the high genes (GHs and CBMs) and subtribe (GH8, GH12, GH45, GH6, GH9, GH5, GH10, GH3, GH52, GH11, GH57, CBM1, CBM4, CBM6, CBM16, CBM37, CBM13, CBM35, CBM42, CBM32, and CBM62) that encode cellulolytic enzymes were significantly increased when the host faced low quantity and quality of forage. https://www.selleckchem.com/products/vt107.html Genes involved in metabolic pathways, fatty acid biosynthesis and biosynthesis of antibiotics were significantly enriched, which indicated that rumen microbiota could improve plant biomass deconstruction and energy maintenance in the face of nutritional deficiencies. In the regreen period, both the composition and function of rumen microbiota had obvious disadvantages, therefore, to improve the competitiveness of microorganisms, we suggest TS should be supplemented with high-protein feed. This study is of great significance for exploring the high altitude adaptability of TS.The combined application of linear amplification-mediated PCR (LAM-PCR) protocols with next-generation sequencing (NGS) has had a large impact on our understanding of retroviral pathogenesis. Previously, considerable effort has been expended to optimize NGS methods to explore the genome-wide distribution of proviral integration sites and the clonal architecture of clinically important retroviruses like human T-cell leukemia virus type-1 (HTLV-1). Once sequencing data are generated, the application of rigorous bioinformatics analysis is central to the biological interpretation of the data. To better exploit the potential information available through these methods, we developed an optimized bioinformatics pipeline to analyze NGS clonality datasets. We found that short-read aligners, specifically designed to manage NGS datasets, provide increased speed, significantly reducing processing time and decreasing the computational burden. This is achieved while also accounting for sequencing base quality. We demonstrae LAM-PCR-based NGS clonality datasets.Attached Vibrio cholerae biofilms are essential for environmental persistence and infectivity. The vps loci (vpsU, vpsA-K, and vpsL-Q) are required for mature biofilm formation and are responsible for the synthesis of exopolysaccharide. Transcription of vps genes is activated by the signaling molecule bis-(3'-5')-cyclic di-GMP (c-di-GMP), whose metabolism is controlled by the proteins containing the GGDEF and/or EAL domains. The ferric uptake regulator (Fur) plays key roles in the transcription of many genes involved in iron metabolism and non-iron functions. However, roles for Fur in Vibrio biofilm production have not been documented. In this study, phenotypic assays demonstrated that Fur, independent of iron, decreases in vivo c-di-GMP levels and inhibits in vitro biofilm formation by Vibrio cholerae. The Fur box-like sequences were detected within the promoter-proximal DNA regions of vpsU, vpsA-K, vieSAB, and cdgD, suggesting that transcription of these genes may be under the direct control of Fur. Indeed, the results of luminescence, quantitative PCR (qPCR), electrophoretic mobility shift assay (EMSA), and DNase I footprinting assays demonstrated Fur to bind to the promoter-proximal DNA regions of vpsU, vpsA-K, and cdgD to repress their transcription.