https://www.selleckchem.com/products/vafidemstat.html After the resumption of work, the pressure of epidemic prevention and control has been concentrated mainly in Shenzhen and Canton; the further away a region is from the core cities, the lower the pressure in that region. The mass migration of the population makes it difficult to control the epidemic effectively. The study of the relationship between migration volume, epidemic severity and epidemic risk is helpful to further analyze transmission types and predict the trends of the epidemic.The chemical composition of otoliths (earbones) can provide valuable information about stock structure and connectivity patterns among marine fish. For that, chemical signatures must be sufficiently distinct to allow accurate classification of an unknown fish to their area of origin. Here we have examined the suitability of otolith microchemistry as a tool to better understand the spatial dynamics of skipjack tuna (Katsuwonus pelamis), a highly valuable commercial species for which uncertainties remain regarding its stock structure in the Indian Ocean. For this aim, we have compared the early life otolith chemical composition of young-of-the-year ( less then 6 months) skipjack tuna captured from the three main nursery areas of the equatorial Indian Ocean (West, Central and East). Elemental (LiCa, SrCa, BaCa, MgCa and MnCa) and stable isotopic (δ13C, δ18O) signatures were used, from individuals captured in 2018 and 2019. Otolith SrCa, BaCa, MgCa and δ18O significantly differed among fish from different nurseries, but, in general, the chemical signatures of the three nursery areas largely overlapped. Multivariate analyses of otolith chemical signatures revealed low geographic separation among Central and Eastern nurseries, achieving a maximum overall random forest cross validated classification success of 51%. Cohort effect on otolith trace element signatures was also detected, indicating that variations in chemical signatures ass