https://www.selleckchem.com/products/cep-18770.html Levoglucosan has been widely used to quantitatively assess biomass burning's contribution to ambient aerosols, but previous such assessments have not accounted for levoglucosan's degradation in the atmosphere. We develop the first global simulation of atmospheric levoglucosan, explicitly accounting for its chemical degradation, to evaluate the impacts on levoglucosan's use in quantitative aerosol source apportionment. Levoglucosan is emitted into the atmosphere from the burning of plant matter in open fires (1.7 Tg yr-1) and as biofuels (2.1 Tg yr-1). Sinks of atmospheric levoglucosan include aqueous-phase oxidation (2.9 Tg yr-1), heterogeneous oxidation (0.16 Tg yr-1), gas-phase oxidation (1.4 × 10-4 Tg yr-1), and dry and wet deposition (0.27 and 0.43 Tg yr -1). The global atmospheric burden of levoglucosan is 19 Gg with a lifetime of 1.8 days. Observations show a sharp decline in levoglucosan's concentrations and its relative abundance to organic carbon aerosol (OC) and particulate K+ from near-source to remote sites. We show that such features can only be reproduced when levoglucosan's chemical degradation is included in the model. Using model results, we develop statistical parametrizations to account for the atmospheric degradation in levoglucosan measurements, improving their use for quantitative aerosol source apportionment.For the most complex artificial chlorinated environmental contaminants, much less is known for medium-chain CPs than short-chain CPs. In this research, the spatial distributions of MCCPs and SCCPs in farmland soil and maize leaves near a CP production facility were found marginally influenced by seasonal winds. The levels of ∑MCCPs and ∑SCCPs were in the ranges of less then 1.51-188 and 5.41-381 ng/g dw for soils; and 77.6-52930 and 119-61999 ng/g dw for maize leaf, respectively. Bioaccumulation and tissue distributions of the CPs within maize plants were specifically analyzed. Most of th