https://www.selleckchem.com/ATM.html SMS data analyses are performed in silico using various software programs; however, in silico analysis is typically regarded as a burden on wet-lab experimental microbiologists. Therefore, in this review, we present microbiologists who are unfamiliar with in silico analyses with a basic and practical SMS data analysis protocol. This protocol covers all the bioinformatics processes of the SMS analysis in terms of data preprocessing, taxonomic profiling, functional annotation, and visualization.System-wide studies of a given molecular type are referred to as "omics." These include genomics, proteomics, and metabolomics, among others. Recent biotechnological advances allow for high-throughput measurement of cellular components, and thus it becomes possible to take a snapshot of all molecules inside cells, a form of omics study. Advances in computational modeling methods also make it possible to predict cellular mechanisms from the snapshots. These technologies have opened an era of computation-based biology. Component snapshots allow the discovery of gene-phenotype relationships in diseases, microorganisms in the human body, etc. Computational models allow us to predict new outcomes, which are useful in strain design in metabolic engineering and drug discovery from protein-ligand interactions. However, as the quantity of data increases or the model becomes complicated, the process becomes less accessible to biologists. In this special issue, six protocol articles are presented as user guides in the field of computational biology.For years, spirituality and finding the meaning of life have been considered essential phenomena in the context of human existence. Zohar introduced the term spiritual intelligence (SI) in 1997, and since that time researchers have been seeking to clarify the concept. Emmons (The psychology of ultimate concerns. Guilford Press, New York, 1999) suggested that SI serves as a potentially significant construct t