https://www.selleckchem.com/products/fr180204.html However, through the confined compression tests, we found that the samples with smaller initial volumes exhibit more compressible behavior. Hence, we developed a novel strain energy density model to characterize the initial-volume dependent hyperelastic response, and found that the bulk modulus of liver tissues is positively related to the initial volume. Our results suggest that the compressibility of liver tissues should be considered in the future study of liver biomechanics.The rotator cuff is theorized to contribute to force couples required to produce glenohumeral kinematics. Impairment in these force couples would theoretically result in impaired ball-and-socket kinematics. Although less frequently used than traditional kinematic descriptors (e.g., Euler angles, joint translations), helical axes are capable of identifying alterations in ball-and-socket kinematics by quantifying the variability (i.e., dispersion) in axis orientation and position during motion. Consequently, assessing glenohumeral helical dispersion may provide indirect evidence of rotator cuff function. The purpose of this exploratory study was to determine the extent to which rotator cuff pathology is associated with alterations in ball-and-socket kinematics. Fifty-one participants were classified into one of five groups based on an assessment of the supraspinatus using diagnostic imaging asymptomatic healthy, asymptomatic tendinosis, asymptomatic partial-thickness tear, asymptomatic full-thickness tear, symptomatic full-thickness tear. Glenohumeral kinematics were quantified during coronal plane abduction using a biplane x-ray system and described using instantaneous helical axes. The degree to which glenohumeral motion coincided with ball-and-socket kinematics was described using the angular and positional dispersion about the optimal helical axis and pivot, respectively. No statistically significant difference was observed between groups i