The hydride ligand in the cationic calcium hydride supported by a NNNN-type macrocycle, [(Me4TACD)2Ca2(μ-H)2(THF)][BAr4]2 (1; Me4TACD = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane; THF = tetrahydrofuran; BAr4 = B(C6H3-3,5-Me2)4), shows, in addition to its Brönsted basicity toward weak acids, a pronounced nucleophilicity resulting in nucleophilic substitution or insertion (addition) at a silicon or sp2 carbon center. Terminal acetylenes RC≡CH (R = SiMe3, cyclopropyl) as well as 1,4-diphenylbutadiene were deprotonated by 1 to give dinuclear complexes [(Me4TACD)2Ca2(μ-C≡CR)2][BAr4]2 (2a, R = SiMe3; 2b, R = cyclopropyl) and [(Me4TACD)2Ca2(μ2-η4-1,4-Ph2C4H2)][BAr4]2 (3) with H2 evolution. The addition reaction with BH3(THF) gave a tetrahydridoborate complex, [(Me4TACD)Ca(BH4)(THF)2][BAr4] (4), with κ2-H2BH2 coordination in the solid state, suggesting a pronounced Lewis acidic calcium center. The behavior resulting from both Lewis acidity and hydricity becomes apparent in the nucleophilic substitution of fluorobenzene by 1 to give benzene and the dimeric fluoride complex [(Me4TACD)2Ca2(μ-F)2(THF)][BAr4]2·2.5THF (5). Analogous nucleophilic substitution reaction is observed for heterofunctionalized organosilanes XSiR3 [X = I, N(SiHMe2)2, N3; R = Me3 or HMe2], which resulted in the formation of calcium complexes [(Me4TACD)Ca(X)(THF)n][BAr4] (6-8) containing an X ligand along with hydrosilane HSiR3. An insertion reaction by 1 was observed with CO2 and CO to give dinuclear formato complex [(Me4TACD)2Ca2(μ-OCHO)2][BAr4]2 (9) and cis-enediolato complex [(Me4TACD)2Ca2(μ-OCH═CHO)][BAr4]2·3.5THF (10), respectively. The latter is believed to have been formed as a result of the dimerization of an initially generated formyl or oxymethylene complex, [(Me4TACD)Ca(OCH)]+.This study demonstrates that in situ-generated reactive oxygen species (ROSs) in prephotocharged TiO2 and WO3 (TW) composite particle-embedded inorganic membrane filters oxidize arsenite (As(III)) into arsenate (As(V)) without any auxiliary chemical oxidants under ambient conditions in the dark. TW membrane filters have been charged with UV or simulated sunlight and subsequently transferred to a once-through flow-type system. The charged TW filters can transfer the stored electrons to dissolved O2, producing ROSs that mediate As(III) oxidation in the dark. Dramatic inhibition of As(V) production with O2 removal or addition of ROS quenchers indicates an ROS-mediated As(III) oxidation mechanism. Electron paramagnetic spectroscopic analysis has confirmed the formation of the HO2•/O2•- pair in the dark. The WO3 fraction in the TW filter significantly influences the performance of the As(III) oxidation, while As(V) production is enhanced with increasing charging time and solution pH. The As(III) oxidation is terminated when the singly charged TW filter is fully discharged; however, recharging of TW recovers the catalytic activity for As(III) oxidation. The proposed oxidation process using charged TW membrane filters is practical and environmentally benign for the continuous treatment of As(III)-contaminated water during periods of unavailability of sunlight.The synthesis and properties of dinaphtho[1,8-bc1',8'-ef]thiepine bisimide (DNTBI) and its oxides are described. Their molecular design is conceptually based on the insertion of a sulfur atom into the perylene bisimide (PBI) core. These sulfur-inserted PBI derivatives adopt nonplanar structures, which significantly increases their solubility in common organic solvents. Upon electron injection, light irradiation, or heating, DNTBI and its sulfoxides undergo sulfur extrusion reactions to furnish PBI. The photoinduced and thermal sulfur extrusion reactions proceed almost quantitatively. This unique reactivity enabled the fabrication of a high-performance solution-processed n-type organic field-effect transistor with an electron mobility of up to 0.41 cm2 V-1 s-1.Water is typically considered to be insoluble in alkanes. Recently, however, monomerically dissolved water in alkanes has been shown to dramatically impact the structure of hydrogen-bonded supramolecular polymers. Here, we report that water in methylcyclohexane (MCH) also determines the outcome of combining a Michael reaction with a porphyrin-based supramolecular system. In dry conditions, the components of the reaction do not affect or destabilize the supramolecular polymer, whereas in ambient or wet conditions the polymers are rapidly destabilized. Although spectroscopic investigations show no effect of water on the molecular structure of the supramolecular polymer, light scattering and atomic force microscopy experiments show that water increases the flexibility of the supramolecular polymer and decreases the polymer length. Through a series of titrations, we show that a cooperative interaction, involving the coordination of the amine catalyst to the porphyrin and complexation of the substrates to the flexible polymers invokes the depolymerization of the aggregates. Water crucially stabilizes these cooperative interactions to cause complete depolymerization in humid conditions. Additionally, we show that the humidity-controlled interference in the polymer stability occurs with various substrates, indicating that water may play a ubiquitous role in supramolecular polymerizations in oils. By controlling the amount of water, the influence of a covalent chemical process on noncovalent aggregates can be mediated, which holds great potential to forge a connection between chemical reactivity and supramolecular material structure. https://www.selleckchem.com/products/blu-285.html Moreover, our findings highlight that understanding cooperative interactions in multicomponent noncovalent systems is crucial to design complex molecular systems.The resolution of inflammation is governed by the active biosynthesis of specialized pro-resolving mediators using ω-6 and ω-3 polyunsaturated fatty acids as substrates. These mediators act as resolution agonists and display several interesting bioactivities. PD2n-3 DPA is an oxygenated polyunsaturated fatty acid biosynthesized from n-3 docosapentaenoic acid belonging to the specialized pro-resolving lipid mediator family named protectins. The protectins exhibit anti-inflammatory properties and pro-resolving bioactivities. These endogenously produced compounds are of interest as leads in resolution pharmacology and drug development. Herein, together with its NMR, MS, and UV data, a stereoselective total synthesis of PD2n-3 DPA is presented.