https://www.selleckchem.com/products/a-485.html The biofouling of marine organisms on a surface induces serious economic damage. One of the conventional anti-biofouling strategies is the use of toxic chemicals. In this study, a new eco-friendly oleamide-PDMS copolymer (OPC) is proposed for sustainable anti-biofouling and effective drag reduction. The anti-biofouling characteristics of the OPC are investigated using algal spores and mussels. The proposed OPC is found to inhibit the adhesion of algal spores and mussels. The slippery features of the fabricated OPC surfaces are examined by direct measurement of pressure drops in channel flows. The proposed OPC surface would be utilized in various industrial applications including marine vehicles and biomedical devices.In this paper, authors propose a study on microwave gas sensors and the influence of critical key parameters such as the sensitive material and the circuit conception process. This work aims to determine the influence of these parameters on the quality of the final response of the microwave gas sensor. The fixed geometry of the sensor is a microstrip interdigital capacitor coated with a sensitive layer excited with two 50 Ω SMA ports. The sensitive material has been chosen in order to interact with the target gas ammonia. Indeed, this gas interacts with phthalocyanine and metal oxides like hematite, TiO2. To explore the effect of the circuit manufacturing process, three series of samples are prepared. The first series of sensors is produced by classical UV photolithography (process) in the laboratory. The second series of sensors is produced by a subcontractor specialized in rf circuits. The third series is obtained by the experimental platform of the FEMTO-ST laboratory with EVG620 Automated Mask Alignment System Nanoimprint lithography in a clean room. To examine the reliability of this gas sensor at room temperature, it was exposed to different ammonia gas concentrations from 100 to 500 ppm in an argon