https://www.selleckchem.com/products/cp-91149.html rosea. An empirical Bayesian multiple hypothesis testing approach identified 279 single nucleotide polymorphism markers significantly (local false sign rate less then 10-10) associated with the trait. in the genomic regions associated with nematicidal activity included several membrane transporters, a chitinase and genes encoding proteins predicted to biosynthesize secondary metabolites. Gene deletion strains of the predicted nonribosomal peptide synthetase genes nps4 and nps5 were generated and showed increased (p ≤ .001) fungal growth and conidiation rates compared to the wild type. Deletion strains also exhibited reduced (p less then .001) nematicidal activity and reduced (p ≤ .05) biocontrol efficacy against nematode root disease and against fusarium foot rot on wheat. In summary, we show that the GWAS approach can be used to identify biocontrol factors in C. rosea, specifically the putative nonribosomal peptide synthetases NPS4 and NPS5.Most human populations exhibit an excess of high-frequency variants, leading to a U-shaped site-frequency spectrum (uSFS). This pattern has been generally interpreted as a signature of ongoing episodes of positive selection, or as evidence for a mis-assignment of ancestral/derived allelic states, but uSFS has also been observed in populations receiving gene flow from a ghost population, in structured populations, or after range expansions. In order to better explain the prevalence of high-frequency variants in humans and other populations, we describe here which patterns of gene flow and population demography can lead to uSFS by using extensive coalescent simulations. We find that uSFS can often be observed in a population if gene flow brings a few ancestral alleles from a well-differentiated population. Gene flow can either consist in single pulses of admixture or continuous immigration, but different demographic conditions are necessary to observe uSFS in these two scenarios.