One of the main challenges for implantable biomedical sensing schemes is obtaining a reliable signal while maintaining biocompatibility. In this work, we demonstrate that a combination of medical ultrasound imaging and smart hydrogel micromechanical resonators can be employed for continuous monitoring of analyte concentrations. The sensing principle is based on the shift of the mechanical resonance frequencies of smart hydrogel structures induced by their volume-phase transition in response to changing analyte levels. This shift can then be measured as a contrast change in the ultrasound images due to resonance absorption of ultrasound waves. This concept eliminates the need for implanting complex electronics or employing transcutaneous connections for sensing biomedical analytes in vivo. Here, we present proof-of-principle experiments that monitor in vitro changes in ionic strength and glucose concentrations to demonstrate the capabilities and potential of this versatile sensing platform technology.The halogenated acetic acids (HAAs) are generally considered as environmental contaminants and are suspected to pose a major public health concern. The inductively coupled plasma mass spectrometry (ICPMS) has been improved by coupling with the tandem mass spectrometry technology (ICPMS/MS), enabling ultratrace determination of heteroatoms. There have been few reports about the determination of chlorine-containing analytes by high-performance liquid chromatography (HPLC)-ICPMS/MS but none about utilizing this technique for the speciation analysis of organic halogenated compounds in environmental matrixes. We report a rapid method for the simultaneous determination of up to nine chlorinated and brominated acetic acids by HPLC-ICPMS/MS in Austrian surface, ground, and tap water. The chromatographic separation of the main five regulated haloacetic acids (so-called HAA5 chloroacetic acid, dichloroacetic acid, trichloroacetic acid, bromoacetic acid, and dibromoacetic acid) could be achieved in less then 6 min with limits of detection of 1.4-1.6 μg Cl L-1 and 0.8-1.5 μg Br L-1 for the chlorinated and brominated acetic acids, respectively. The method was validated through recovery experiments at four concentration levels (10-500 μg L-1) as well as by analyzing the U.S. Environmental Protection Agency (EPA) 552.2 CRM (certified reference material) in pure water and in three different water matrixes (tap, river, and groundwater), and thereby validated for repeatability (RSD% 1-10%), accuracy (±1.0-15%), and linearity (r2 = 0.9996-0.9999). https://www.selleckchem.com/products/VX-745.html The method fulfills the regulatory concentration limits by the EPA for HAA5 [maximum contaminant level (MCL) 60 μg L-1] and the limits currently being reviewed by the European Union for HAA9 (80 μg L-1) and demonstrates the advantages of HPLC-ICPMS/MS for the analysis of environmental water samples for halogen-tagged contaminants.Designing the catalytic interface that preferentially attracts reactants is highly desirable for amplifying chemiluminescence (CL) emission. Herein, to boost the generation of reactive oxygen species (ROS) from dissolved O2 molecule, flower-like cobalt hydroxide (f-Co(OH)2) based catalytic interface with hierarchical and porous architecture were in situ created in the coexistence of BSA and Co2+. Benefiting from the oxidase-like catalysis capability and the unique microstructure of f-Co(OH)2, ROS was efficiently produced. Meanwhile, the capping ligands of BSA endowed the interface with the capability of enriching functionality through the interaction between BSA and luminol. 100-fold CL enhancement was achieved using the as-prepared catalytic interface compared with the classical luminol-Co2+ or luminol-BSA system. Moreover, the proposed catalytic amplification mechanism could be extended to the different proteins such as lysozyme, protamine, thrombin, papain. Based on the quenching effect on CL, a sensitive sensing platform was constructed for the determination of ascorbic acid with satisfied results. Our finding provided a novel "all-in-one" route to design the catalytic interface for amplifying CL emission.Metal melt extrusion in gaseous or vacuum environments is a classical approach for forming wires. However, such extrusions have not been investigated in ionic solutions. Here, we use liquid metal (LM) gallium (Ga) and its eutectic alloy with indium (EGaIn) to explore the possibility of electrochemical extrusion of wires and study the tuning of the self-liming oxide layers as the coating for these wires formed during the process. By controlling the surface tension of the LM immersed in an electrolyte, and through the electrocapillary effect, we enable the extrusion of LM wires. The surface morphologies of LM wires and the thickness of the oxide layers are investigated when Ga and EGaIn are processed in neutral and basic electrolytes using various voltages. Taking advantage of the LM oxides, we show that LM wires offer tunable surface oxide thickness and composition using the electrochemical system and investigate the related working mechanisms. The wires are formed into patterns using an automated stage and show a self-healing capability. This work presents an unconventional method for electrochemical fabrication of LM wires, offering prospects for further research and industrial scale-up.The use of colloidal self-assembly to form the complex multiscale patterns in many optoelectronic devices has been a long-standing dream of the nanoscience community. While great progress has been made using charged colloids in polar solvents, controlled assembly from nonpolar solvents is much more challenging. The major challenge is colloidal clustering caused by strong van der Waals (vdW) attraction between long-chain surface capping ligands passivating the surface of nanocrystals. Such clustering degrades ordering in packing during the self-assembly process. While ligand exchange to provide colloidal stability in polar phases is often an option, this is not the case for the exciting new class of halide perovskites due to the material's solubility in essentially all polar solvents. Here, we report surface-functionalized self-assembly of luminescent CsPbBr3 perovskite nanocubes by partially replacing long-chain oleyl groups (18 carbon chain) with short-chain thiocyanate (SCN-). This enables the fabrication of ultrasmooth monolayer thin films of nanocubes with a root-mean-square (RMS) roughness of around 4 Å.